Acreche, M. M., & Slafer, G. A. (2009). Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. The Journal of Agricultural Science, 147(6), 657-667. https://doi.org/10.1017/S0021859609990190
Acreche, M. M., Briceño-Félix, G., Sánchez, J. A. M., & Slafer, G. A. (2008). Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain. European Journal of Agronomy, 28(3), 162-170. https://doi.org/https://doi.org/10.1016/j.eja.2007.07.001
Aisawi, K. A. B., Reynolds, M. P., Singh, R. P., & Foulkes, M. J. (2015). The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 55(4), 1749-1764. https://doi.org/10.2135/cropsci2014.09.0601
Alonso, M. P., Mirabella, N. E., Panelo, J. S., Cendoya, M. G., & Pontaroli, A. C. (2018). Selection for high spike fertility index increases genetic progress in grain yield and stability in bread wheat. Euphytica, 214(7), 112. https://doi.org/10.1007/S20681-018-2193-4
Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., Ford, M. A., Morgan, C. L., & Taylor, M. (1980). Genetic improvements in winter wheat yields since 1900 and associated physiological changes. The Journal of Agricultural Science, 94(3), 675-689. https://doi.org/10.1017/S0021859600028665
Backhaus, A. E., Griffiths, C., Vergara-Cruces, A., Simmonds, J., Lee, R., Morris, R. J., & Uauy, C. (2023). Delayed development of basal spikelets in wheat explains their increased floret abortion and rudimentary nature. Journal of Experimental Botany, 74(17), 5088-5103. https://doi.org/10.1093/jxb/erad233
Beche, E., Benin, G., da Silva, C. L., Munaro, L. B., & Marchese, J. A. (2014). Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 61, 49-59. https://doi.org/https://doi.org/10.1016/j.eja.2014.08.005
Borrás, L., Slafer, G. A., & Otegui, M. E. (2004). Seed dry weight response to source–sink manipulations in wheat, maize and soybean: A quantitative reappraisal. Field Crops Research, 86(2), 131-146. https://doi.org/10.1016/j.fcr.2003.08.002
Calderini, D. F., Savin, R., Abeledo, L. G., Reynolds, M. P., & Slafer, G. A. (2001). The importance of the period immediately preceding anthesis for grain weight determination in wheat. Euphytica, 119(1), 199-204. https://doi.org/10.1023/A:1017597923568
Cockram, J., Jones, H., Leigh, F. J., O’Sullivan, D., Powell, W., Laurie, D. A., & Greenland, A. J. (2007). Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. Journal of Experimental Botany, 58(6), 1231-1244. https://doi.org/10.1093/jxb/erm042
Ferrante, A., Savin, R., & Slafer, G. A. (2010). Floret development of durum wheat in response to nitrogen availability. Journal of Experimental Botany, 61(15), 4351-4359. https://doi.org/10.1093/jxb/erq236
Ferrante, A., Savin, R., & Slafer, G. A. (2013). Floret development and grain setting differences between modern durum wheats under contrasting nitrogen availability. Journal of Experimental Botany, 64(1), 169-184. https://doi.org/10.1093/jxb/erS420
Ferrante, A., Savin, R., & Slafer, G. A. (2020). Floret development and spike fertility in wheat: Differences between cultivars of contrasting yield potential and their sensitivity to photoperiod and soil N. Field Crops Research, 256, 107908. https://doi.org/https://doi.org/10.1016/j.fcr.2020.107908
Firoozabadi, Z. D., Nikkhah, H. R., & Foruzesh, P. (2023). Study of relationship between morpho-physiological traits and grain yield under terminal drought stress conditions in barley genotypes. Cereal Research Communications, 51(1), 207-216. https://doi.org/10.1007/S52976-022-00286-x
Fischer, R. A. (1985). Number of kernels in wheat crops and the influence of solar radiation and temperature. The Journal of Agricultural Science, 105(2), 447-461. https://doi.org/10.1017/S0021859600056495
Fischer, R. A. (2007). Understanding the physiological basis of yield potential in wheat. The Journal of Agricultural Science, 145(2), 99-109.
Fischer, R. A. (2011). Wheat physiology: A review of recent developments. Crop and Pasture Science, 62(2), 95-114. https://doi.org/10.1071/CP10344
Foulkes, M. J., Slafer, G. A., Davies, W. J., Berry, P. M., Sylvester-Bradley, R., Martre, P., Calderini, D. F., Griffiths, S., & Reynolds, M. P. (2011). Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany, 62(2), 469-486. https://doi.org/10.1093/jxb/erq300
Gonzalez-Navarro, O. E., Griffiths, S., Molero, G., Reynolds, M. P., & Slafer, G. A. (2016). Variation in developmental patterns among elite wheat lines and relationships with yield, yield components and spike fertility. Field Crops Research, 196, 294-304. https://doi.org/https://doi.org/10.1016/j.fcr.2016.07.019
González, F. G., Miralles, D. J., & Slafer, G. A. (2011). Wheat floret survival as related to pre-anthesis spike growth. Journal of Experimental Botany, 62(14), 4889-4901. https://doi.org/10.1093/jxb/err182
González, F. G., Slafer, G. A., & Miralles, D. J. (2003). Floret development and spike growth as affected by photoperiod during stem elongation in wheat. Field Crops Research, 81(1), 29-38. https://doi.org/https://doi.org/10.1016/S0378-4290(02)00196-X
González, F. G., Slafer, G. A., & Miralles, D. J. (2005). Floret development and survival in wheat plants exposed to contrasting photoperiod and radiation environments during stem elongation. Functional Plant Biology, 32(3), 189-197. https://doi.org/10.1071/FP04104
Guo, Z., Chen, D., & Schnurbusch, T. (2015). Variance components, heritability and correlation analysis of anther and ovary size during the floral development of bread wheat. Journal of Experimental Botany, 66(11), 3099-3111. https://doi.org/10.1093/jxb/erv117
Guo, Z., & Schnurbusch, T. (2015). Variation of floret fertility in hexaploid wheat revealed by tiller removal. Journal of Experimental Botany, 66(19), 5945-5958. https://doi.org/10.1093/jxb/erv303
Haghshenas, A., Emam, Y., Sepaskhah, A. R., & Edalat, M. (2021). Can extended phenology in wheat cultivar mixtures mitigate post-anthesis water stress? European Journal of Agronomy, 122, 126188. https://doi.org/https://doi.org/10.1016/j.eja.2020.126188
Jahani Doghozlou, M., & Emam, Y. (2022). Differential floral developmental patterns in some recently released Iranian bread wheat cultivars. Journal of Agricultural Science and Technology, 24(6), 1397-1411. https://doi.org/10.52547/jast.24.6.1397
Kirby, E. J. M. (1974). Ear development in spring wheat. The Journal of Agricultural Science, 82(3), 437-447. https://doi.org/10.1017/S0021859600051339
Kirby, E. J. M., & Appleyard, M. (1984). Cereal development guide. Arable Unit, National Agricultural Centre. Retrived from: https://books.google.se/books?id=yFeRoAEACAAJ
McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300. https://doi.org/https://doi.org/10.1016/S0168-1923(97)00027-0
Miralles, D. J., Richards, R. A., & Slafer, G. A. (2000). Duration of the stem elongation period influences the number of fertile florets in wheat and barley. Functional Plant Biology, 27(10), 931-940. https://doi.org/10.1071/PP00021
Mondal, S., Dutta, S., Crespo-Herrera, L., Huerta-Espino, J., Braun, H. J., & Singh, R. P. (2020). Fifty years of semi-dwarf spring wheat breeding at CIMMYT: Grain yield progress in optimum, drought and heat stress environments. Field Crops Research, 250, 107757. https://doi.org/https://doi.org/10.1016/j.fcr.2020.107757
Motzo, R., & Giunta, F. (2007). The effect of breeding on the phenology of Italian durum wheats: From landraces to modern cultivars. European Journal of Agronomy, 26(4), 462-470. https://doi.org/https://doi.org/10.1016/j.eja.2007.01.007
Murchie, E. H., Reynolds, M., Slafer, G. A., Foulkes, M. J., Acevedo-Siaca, L., McAusland, L., Sharwood, R., Griffiths, S., Flavell, R. B., Gwyn, J., Sawkins, M., & Carmo-Silva, E. (2023). A ‘wiring diagram’ for source strength traits impacting wheat yield potential. Journal of Experimental Botany, 74(1), 72-90. https://doi.org/10.1093/jxb/erac415
Ochagavía, H., Prieto, P., Savin, R., & Slafer, G. A. (2021). Developmental patterns and rates of organogenesis across modern and well-adapted wheat cultivars. European Journal of Agronomy, 126, 126280. https://doi.org/10.1016/j.eja.2021.126280
Pedro, A., Savin, R., Parry, M. A. J., & Slafer, G. A. (2012). Selection for high grain number per unit stem length through four generations from mutants in a durum wheat population to increase yields of individual plants and crops. Field Crops Research, 129, 59-70. https://doi.org/https://doi.org/10.1016/j.fcr.2012.01.016
Pessarakli, M. (2021). Handbook of plant and crop physiology. USA: CRC Press.
Philipp, N., Weichert, H., Bohra, U., Weschke, W., Schulthess, A. W., & Weber, H. (2018). Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLOS ONE, 13(10), e0205452. https://doi.org/10.1371/journal.pone.0205452
PirastehAnosheh, H., Emam, Y., & Khaliq, A. (2016). Response of cereals to cycocel application. Iran Agricultural Research, 35(1), 1-12. https://doi.org/10.22099/iar.2016.3652
Prieto, P., Ochagavía, H., Savin, R., Griffiths, S., & Slafer, G. A. (2018). Physiological determinants of fertile floret survival in wheat as affected by earliness per se genes under field conditions. European Journal of Agronomy, 99, 206-213. https://doi.org/https://doi.org/10.1016/j.eja.2018.07.008
Reynolds, M. P., Ortiz-Monasterio, I., & McNab, A. (2001). Application of physiology in wheat breeding. Mexico: CIMMYT.
Roychowdhury, R., Zilberman, O., Chandrasekhar, K., Curzon, A. Y., Nashef, K., Abbo, S., Slafer, G. A., Bonfil, D. J., & Ben-David, R. (2023). Pre-anthesis spike growth dynamics and its association to yield components among elite bread wheat cultivars (Triticum aestivum L. spp.) under Mediterranean climate. Field Crops Research, 298, 108948. https://doi.org/https://doi.org/10.1016/j.fcr.2023.108948
Sadras, V. O. (2021). Evolutionary and ecological perspectives on the wheat phenotype. Proceedings of the Royal Society B: Biological Sciences, 288, 20211259. https://doi.org/10.1098/rspb.2021.1259
Serrago, R. A., García, G. A., Savin, R., Miralles, D. J., & Slafer, G. A. (2023). Determinants of grain number responding to environmental and genetic factors in two- and six-rowed barley types. Field Crops Research, 302, 109073. https://doi.org/https://doi.org/10.1016/j.fcr.2023.109073
Serrago, R. A., Miralles, D. J., & Slafer, G. A. (2008). Floret fertility in wheat as affected by photoperiod during stem elongation and removal of spikelets at booting. European Journal of Agronomy, 28(3), 301-308. https://doi.org/https://doi.org/10.1016/j.eja.2007.08.004
Sierra-Gonzalez, A., Molero, G., Rivera-Amado, C., Babar, M. A., Reynolds, M. P., & Foulkes, M. J. (2021). Exploring genetic diversity for grain partitioning traits to enhance yield in a high biomass spring wheat panel. Field Crops Research, 260, 107979. https://doi.org/https://doi.org/10.1016/j.fcr.2020.107979
Slafer, G. A., Foulkes, M. J., Reynolds, M. P., Murchie, E. H., Carmo-Silva, E., Flavell, R., Gwyn, J., Sawkins, M., & Griffiths, S. (2023). A ‘wiring diagram’ for sink strength traits impacting wheat yield potential. Journal of Experimental Botany, 74(1), 40-71. https://doi.org/10.1093/jxb/erac410
Slafer, G. A., García, G. A., Serrago, R. A., & Miralles, D. J. (2022). Physiological drivers of responses of grains per m2 to environmental and genetic factors in wheat. Field Crops Research, 285, 108593. https://doi.org/https://doi.org/10.1016/j.fcr.2022.108593
Slafer, G. A., Savin, R., Pinochet, D., & Calderini, D. F. (2021). Wheat. In: Crop physiology case histories for major crops (pp. 98-163). Elsevier. https://doi.org/10.1016/B978-0-12-819194-1.00003-7
Slafer, G. A., Savin, R., & Sadras, V. O. (2014). Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Research, 157, 71-83. https://doi.org/https://doi.org/10.1016/j.fcr.2013.12.004
Tétard-Jones, C., & Leifert, C. (2011). Plasticity of yield components of winter wheat in response to cereal aphids. NJAS - Wageningen Journal of Life Sciences, 58(3), 139-143. https://doi.org/https://doi.org/10.1016/j.njas.2011.01.003
Tilley, M. S., Heiniger, R. W., & Crozier, C. R. (2019). Tiller initiation and its effects on yield and yield components in winter wheat. Agronomy Journal, 111(3), 1323-1332. https://doi.org/https://doi.org/10.2134/agronj2018.07.0469
Vahamidis, P., Karamanos, A. J., & Economou, G. (2019). Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level. Annals of Applied Biology, 174(2), 190-208. https://doi.org/10.1111/aab.12487
Waddington, S. R., Cartwright, P. M., & Wall, P. C. (1983). A quantitative scale of spike initial and pistil development in barley and wheat. Annals of Botany, 51(1), 119-130. https://doi.org/10.1093/oxfordjournals.aob.a086434
Xie, Q., Mayes, S., & Sparkes, D. L. (2016). Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population. Annals of Botany, 117(1), 51-66. https://doi.org/10.1093/aob/mcv147
Zamani, A., Emam, Y., & Edalat, M. (2024). Response of bread wheat cultivars to terminal water stress and cytokinin application from a grain phenotyping perspective. Agronomy, 14(1), 182. https://doi.org/10.3390/agronomy14010182