Modeling non-Newtonian liquid viscosity: Impact of temperature and concentration on the rate of occupied area variation

Document Type : Research Paper

Authors

Department of Biosystems Engineering, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

The rheological behaviors of liquid and semi-solid foods during production processes play a critical role in the design and optimization of processing equipment. Consequently, continuous monitoring of properties such as the viscosity of non-Newtonian liquids is essential in food processing industries. To address this need, the present study explores the feasibility of using image processing techniques to estimate the apparent viscosity of non-Newtonian fluids. Both regression analysis and artificial neural network (ANN) models were developed to interpret the measured data. The regression models yielded coefficients of determination (R²) ranging from 0.96 to 1.00, with average absolute estimation errors between 0.02% and 15.27%. Additionally, two ANN architectures, multilayer perceptron (MLP) and radial basis function (RBF), were evaluated for their predictive performance. The high correlation coefficients achieved during both training and testing phases indicate the strong predictive capability of these models. Overall, the findings support the use of image processing, specifically through analysis of surface area variations, as a viable and accurate approach for estimating the apparent viscosity of non-Newtonian liquids in food processing applications.

Keywords

Main Subjects


Article Title [Persian]

مدل‌سازی گرانروی مایع غیرنیوتنی: تأثیر دما و غلظت بر نرخ تغییرات سطح اشغال‌شده

Authors [Persian]

  • سید مهدی نصیری
  • رامین رحمانی
  • محمد امین نعمت اللهی
بخش مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

رفتار مواد غذایی مایع و نیمه جامد در طول فرآیندهای تولید اهمیت قابل توجهی در روند طراحی تجهیزات دارد. بنابراین، اندازه ­گیری مداوم خواصی مانند گرانروی مایعات غیرنیوتنی در صنایع تبدیلی بسیار مهم است. برای پرداختن به این چالش‌ها، این مطالعه امکان استفاده از روش­ های پردازش تصویر برای اندازه‌گیری گرانروی مایعات غیرنیوتنی را بررسی کرد. برای مدل سازی داده ­های اندازه­ گیری شده از روش رگرسیون و شبکه عصبی مصنوعی استفاده شد. دامنه تغییرات ضریب تعیین مدل‌های رگرسیونی بین 0/96 و 1 به دست آمد و درصد میانگین خطای مطلق تخمین از 0/02 درصد تا 15/27 درصد متغیر بود. نتایج به‌دست‌آمده از دو مدل شبکه عصبی، یعنی پرسپترون چندلایه و تابع پایه شعاعی، اثربخشی آن ها را در پیش‌بینی گرانروی ظاهری نشان داد. ضرایب همبستگی بالا مشاهده شده در مراحل آموزش داده و آزمایش، عملکرد موفق شبکه ­های عصبی را تایید می ­کند. این تحقیق قابل اعتماد بودن پردازش تصویر تغییرات سطح یک مایع غیرنیوتنی را برای ارزیابی گرانروی ظاهری تأیید می ­کند.

Keywords [Persian]

  • پردازش تصویر
  • خصوصیات رئولوژی
  • شبکه عصبی مصنوعی
  • قوام
  • مدل‌سازی ریاضی
Abdul Wahab, H., Zeb, H., Bhatti, S., Gulistan, M., Kadry, S., & Nam, Y. (2019). Numerical study for the effects of temperature dependent viscosity flow of non-Newtonian fluid with double stratification. Applied Science, 10, 708. https://doi.org/10.3390/app10020708
Bánó, M., Strharsky, I., & Hrmo, I. (2003). A viscosity and density meter with a magnetically suspended rotor. Review of Scientific Instruments, 74(11), 4788-4793. https://doi.org/10.1063/1.1614881
Benchabane, A., & Bekkour, K. (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polymer Science, 286, 1173-1180. https://doi.org/10.1007/s00396-008-1882-2
Bhattad, A. (2023). Review on viscosity measurement: devices, methods and models. Journal of Thermal Analysis and Calorimetry, 148, 6527-6543. https://doi.org/10.1007/s10973-023-12214-0
Bourne, M. C. (2002). Food texture and viscosity: Concept and measurement. New York: Academic Press.
Brewer, M. J., Butler, A., & Cooksleym, S. L. (2016) The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution, 16(7), 679-692. https://doi.org/10.1111/2041-210X.12541
Deo, R. C., & Şahin, M. (2015). Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmospheric Research, 153, 512-525. https://doi.org/10.1016/j.atmosres.2014.10.016
Eberhard, U., Seybold, H. J., Floriancic, M. G., Bertsch, P., Jimenez-Martinez, J., Andrade, J. S., & Holzner, M. (2019). Determination of the effective viscosity of non-Newtonian fluids flowing through porous media. Frontiers in Physics, 7, 71. https://doi.org/10.3389/fphy.2019.00071
Eberhard, U., Seybold, H. J., Secchi, E., Jimenez-Martinez, J., Ruhs, P. A., Ofner, A., Andrade Jr., J. S., & Holzner, M. (2020). Mapping the local viscosity of non‑Newtonian fluids flowing through disordered porous structures. Scientific Reports, 10, 11733. https://doi.org/10.1038/s41598-020-68545-7
Florence, A., D. (2023). Temperature-dependent variable viscosity and thermal conductivity effects on non-Newtonian fluids flow in a porous medium. World Journal of Engineering, 20(3), 445-457. https://doi.org/10.1108/WJE-03-2021-0130
Girado, S., Cingolani, R., & Pisignano, D. (2007). Investigating the temperature dependence of the viscosity of a non-Newtonian fluid within lithographically defined microchannels. The Journal of Chemical Physics,127, 164701. https://doi.org/10.1063/1.2789426
Hair, Jr. J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis. New Delhi: Pearson Publication.
Holmes, M. J., Parker, N. G., & Povey, M. J. W. (2011) Temperature dependence of bulk viscosity in water using acoustic spectroscopy. Journal of Physics: Conference Series, 269, 012011. https://doi.org/10.1088/1742-6596/269/1/012011
Jafari, A. A., & Tatar, A. (2016). Using image processing technique fin determining liquid viscosity (Case study: Date syrup). Presented at the 10Th National Conference on Iran Agricultural Machinery (Biosystems) and Mechanization, Mashhad: Ferdowsi University of Mashhad. (In Persian)
Kazys, R., Mazeika, L., Sliteris, R., & Raisutis, R. (2014) Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves. Ultrasonics, 54, 1104-1112. https://doi.org/10.1016/j.ultras.2014.01.007
Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook of Monte Carlo methods. New York: John Wiley & Sons.
Kornaeva, E. P., Stebakov, I. N., Koenaev, A. V., Dremin, V. V., Popov, S. G., & Vinokurov, A. Y. (2023). A method to measure non-Newtonian fluid viscosity using inertial viscometer with a computer vision system. International Journal of Mechanical Sciences, 242, 107967. https://doi.org/10.1016/j.ijmecsci.2022.107967
Kuha, J. (2004) AIC and BIC: Comparisons of assumptions and performance. Sociological Methods & Research, 33(2), 188-229. https://doi.org/10.1177/0049124103262065
Kulicke, W. M., & Clasen, C. (2004) Viscosimetry of polymers and polyelectrolytes. Berlin: Springer Berlin Heidelberg.
Li, H., Flé, G., Bhatt, M., Qu, Z., Ghazavi, S., Yazdani, L., Bosio, G., Rafati, I., & Cloutier, G. (2021). Viscoelasticity imaging of biological tissues and single cells using shear wave propagation. Frontier Physics, 9, 666192. https://doi.org/10.3389/fphy.2021.666192
Mohammadi, S. M. (2013) Design and development of a viscosity and molecular weight measurement device of food fluids with variable temperature and evaluation of its performance. Proceeding of 7th national student conference of Mechanical Engineering, Karaj. Karaj: Tehran University. (In Persian)
Moosavi, A. A., Nematollahi, M. A., & Rahimi, M. (2021). Predicting water sorptivity coefficient in calcareous soils using a wavelet–neural network hybrid modeling approach. Environmental Earth Sciences, 80(6), 226. https://doi.org/10.1007/s12665-021-09518-5
Munigela, N., Puranam, S. A., Goel, S., & Puneeth, S. B., (2020). Automated mini-platform with 3-D printed paper microstrips for image processing-based viscosity measurement of biological samples. IEEE Transactions on Electron Devices, 67(6), 2559-2565. https://doi.org/10.1109/TED.2020.2989727
Nassiri, S. M., Bakhshipour, A., Heydari Foroshani, M. M., & Barzegar Marvasti, M. (2013). Estimation of apparent viscosity of non-Newtonian fluids using image processing. Presented at the 8th National Conference on Iran Agricultural Machinery (Biosystems) and Mechanization, Mashhad: Ferdowsi University of Mashhad. (In Persian)
Nematollahi, M. A., Jamali, B., & Hosseini, M. (2020). Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis. Acta Mechanica, 231(2), 683-700. https://doi.org/10.1007/s00707-019-02554-0
Nematollahi, M. A., & Mousavi Khaneghah, A. (2019). Neural network prediction of friction coefficients of rosemary leaves. Journal of Food Process Engineering, 42(6), e13211. https://doi.org/10.1111/jfpe.13211
Noël, M., Semin, B., Hulin, J., & Auradou, H. (2011). Viscometer using drag force measurements. Review of Scientific Instruments, 82(2), 109. https://doi.org/10.1063/1.3556445
Onyeaju, M. C., Osarolube, E., Chukwuocha, E. O., Ekuma, C. E., & Omasheye, G. A. J. (2012). Comparison of the thermal properties of asbestos and polyvinylchloride (PVC) ceiling sheets. Material Science and Applied, 3, 240-244. https://doi.org/10.4236/msa.2012.34035
Park, N. A., & Irvine Jr, T. F. (1997). Liquid density measurements using the falling needle viscometer. International Communications in Heat and Mass Transfer, 24(3), 303-312. https://doi.org/10.1016/S0735-1933(97)00016-X
PCE Instruments. (2016). The importance of viscosity measurement in food production and processing. Retrieved from:
Quej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2016) Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Conversion and Management, 110, 448-456. https://doi.org/10.1016/j.enconman.2015.12.050
Razavi, M. A. (2006) Biophysical properties of agricultural products and food materials. Mashhad. Mashhad: Ferdowsi University of Mashhad Press. (In Persian)
Sadat, A., & Khan, I. A. (2007) A novel technique for the measurement of liquid viscosity. Journal of Food Engineering, 80(4), 1194 -1198. https://doi.org/10.1016/j.jfoodeng.2006.09.009
Saifur Rahman, M., Saif Hasan, M., Nitai, A. S., Nam, S., Karmakar, A. K., Shsan, M. S., Shiddiy, M. J. A., & Ahmed, M. B. (2021) Recent developments of Carboxymethyl cellulose. Polymers, 13, 1345. https://doi.org/10.3390/polym13081345
Santhosh, K. V., & Shenoy, V. (2016) Analysis of liquid viscosity by image processing technique. Indian Journal of Science and Technology, 9(30), 1-7. 10.17485/ijst/2016/v9i30/98693
Shin, S., Lee, S. W., & Keum, D. Y. (2001) A new mass-detecting capillary viscometer. Review of Scientific Instruments, 72(7), 3127-3128. https://doi.org/10.1063/1.1378339
Skoog, D., Holler, J., & Crouch, S. (2007). Principles of instrumental analysis. (6th Ed). Belmont: Thomson Brooks/Cole publisher.
Tang, J. X. (2016). Measurements of fluid viscosity using a miniature ball drop device. Review of Scientific Instruments, 87(5), 054301. https://doi.org/10.1063/1.4948314
Togrul, H., & Arsalan, N. (2003). Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydrate Polymers, 45, 73-82. https://doi.org/10.1016/S0144-8617(03)00147-4
Yasar, F., Togrul, H., & Arslan, N. (2007). Flow properties of cellulose and carboxymethyl cellulose from orange peel. Journal of Food Engineering, 81, 187-199. https://doi.org/10.1016/j.jfoodeng.2006.10.022
Yaseen, E. I., Herald, T. J., Aramouni, F. M., & Alavi, S. (2005) Rheological properties of selected gum solutions. Food Research International, 38, 111-119. https://doi.org/10.1016/j.foodres.2004.01.013
Zavrsnik, M., & Strasser, M. J. (2013). Line viscometry for non-Newtonian viscosity characterization. Sensors, 587-591. https://doi.org/10.5162/sensor2013/D7.2