Exploring the influence of different Froriepia subpinnata drying methods on its essential oils components

Document Type : Research Paper

Authors

Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan I. R. Iran

10.22099/iar.2025.51284.1637

Abstract

Anarijeh (Froriepia subpinnata) is a species in the Apiaceae family, endemic to northern Iran, where it is widely distributed. In this study, we subjected the aerial parts of Anarijeh to various drying methods, including sun drying, shade drying, oven drying at 45 and 65 °C, microwave drying, and freeze drying. Essential oils (EOs) were extracted from both fresh and dried samples using hydro-distillation and analyzed via gas chromatography–mass spectrometry (GC-MS). The results showed that oven drying at 45 °C (2.83%), oven drying at 65  °C (2.81%), sun drying (2.79%), and shade drying (2.74%) produced the highest EOs yields. In contrast, freeze-dried (1.42%), microwave-dried (1.39%), and fresh (1.34%) samples yielded lower percentages. A total of 53 components were identified in the EOs, with the major compounds being p-cymen-7-ol (10.3–19.95%), durenol (20.49–28.88%), and terpinolene (5.63–20.47%). These findings suggest that oven drying may be a suitable method for processing Anarijeh aerial parts, offering both shorter drying times and higher EOs yields. However, as no statistical analyses were conducted, we cannot definitively conclude that the differences between oven drying and shade drying are significant.

Keywords

Main Subjects


Article Title [Persian]

بررسی تأثیر روش‌های مختلف خشک کردن Froriepia subpinnata بر ترکیبات اسانس آن

Authors [Persian]

  • سعید صداقت
  • مریم حقیقی
گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ج. ا. ایران
Abstract [Persian]

اناریجه (Froriepia subpinnata) یک گونه گیاهی از خانواده چتریان (Apiaceae) است که بومی مناطق شمالی ایران می‌باشد. در این منطقه، این گیاه توزیع وسیعی دارد. در این مطالعه، بخش‌های هوایی اناریجه تحت روش‌های مختلف خشک‌کردن قرار گرفتند، از جمله خشک‌کردن در آفتاب، خشک‌کردن در سایه، خشک‌کردن در فر با دماهای℃ ۴۵ و℃ ۶۵، خشک‌کردن با مایکروویو و خشک‌کردن انجمادی. برای استخراج روغن اسانس (EO) از نمونه‌های تازه و خشک‌شده، از تقطیر با بخار استفاده شد و سپس تجزیه و تحلیل با کروماتوگرافی گازی-طیف‌سنجی جرمی (GC-MS) انجام شد. نتایج نشان داد که خشک‌کردن در فر با دمای℃ ۴۵ ( %2/83) خشک‌کردن در فر با دمای℃ ۶۵ (%2/81)، خشک‌کردن در آفتاب (%2/79) و خشک‌کردن در سایه (%2/74) بالاترین درصد ترکیبات روغن اسانس را تولید کردند. در مقابل، درصدهای کمتری از روغن اسانس در نمونه‌های خشک‌شده به روش انجمادی (%1/42)، خشک‌شده با مایکروویو (%1/39) و تازه (%1/34) مشاهده شد. ما دریافتیم که روغن اسانس اناریجه شامل ۵۳ ترکیب است. مواد شیمیایی اصلی موجود در روغن اسانس هر دو نوع بخش هوایی اناریجه، شامل p-Cymen-7-ol (3/10–19/95%/)، دورنول (20/49–%28/88) و ترپینولن (63/5–%20/47) بودند. این مطالعه پیشنهاد می‌کند که خشک‌کردن در فر ممکن است روش مناسبی برای خشک‌کردن بخش‌های هوایی اناریجه باشد، با توجه به زمان کوتاه خشک‌کردن و درصد بالای روغن اسانس؛ با این حال، از آنجایی که تحلیل‌های آماری بیشتری انجام نشده است، نمی‌توانیم به‌طور قطعی نتیجه‌گیری کنیم که آیا تفاوت‌های معناداری در درصد روغن اسانس بین خشک‌کردن در فر و خشک‌کردن در سایه وجود دارد یا خیر.

Keywords [Persian]

  • اناریجه
  • تکنولوژی خشک کردن
  • ترکیبات اسانس
  • خشک کردن انجمادی
Abbas, A. M., Seddik, M. A., Gahory, A. A., Salaheldin, S., & Soliman, W. S. (2021). Differences in the aroma profile of chamomile (Matricaria chamomilla L.) after different drying conditions. Sustainability, 13, 5083.‏ https://doi.org/10.3390/su13095083
Abegaz, B., Yohannes, P. G., & Dieter, R. K. (1983). Constituents of the essential oil of Ethiopian Cymbopogon citratus Stapf. Journal of Natural Products, 46, 424-426. https://doi.org/10.1021/np50027a022
Adams, R. P. (2007). Identification of essential oil compounds by gas chromatography/mass spectrometry, (4 st ed.). Carol Stream, IL: Allured pub Corp.
Alara, O. R., Abdurahman, N. H., Mudalip, S. K. A., & Olalere, O. A. (2018). Mathematical modeling of thin layer drying using open sun and shade of Vernonia amygdalina leaves. Agriculture and Natural Resources, 52, 53-58.‏ http://dx.doi.org/10.1016/j.anres.2018.05.013
Altay, K., Dirim, S. N., & Hayaloglu, A. A. (2024). Effects of different drying processes on the quality changes in Arapgir purple basil (Ocimum basilicum L.) leaves and drying‐induced changes in bioactive and volatile compounds and essential oils. Journal of Food Science, ‏89, 9088-9107. https://doi.org/10.1111/1750-3841.17515
Amiri, M. S., & Joharchi, M. R. (2016). Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna Journal of Phytomedicine, 6, 621-635.
Antal, T., Figiel, A., Kerekes, B., & Sikolya, L. (2011). Effect of drying methods on the quality of the essential oil of spearmint leaves (Mentha spicata L.). Drying Technology, 29, 1836-1844. http://dx.doi.org/10.1080/ 07373937.2011.606519
Argyropoulos, D., & Muller, J. (2014). Changes of essential oil content and composition during convective drying of lemon balm (Melissa officinalis L.). Industrial Crops and Products, 52, 118-24, http://dx.doi.org/10.1016/ j.indcrop.2013.10.020
Bhatt, S., Tewari, G., Pande, C., & Rana, L. (2018). Impact of drying methods on essential oil composition of Ocimum americanum L. from Kumaun Himalayas. Journal of Essential Oil-Bearing Plants, 21, 1385-1396.‏ https://doi.org/10.1080/0972060X.2018.1543031.
Bor, T., Aljaloud, S. O., Gyawali, R., & Ibrahim, S. A. (2016). Antimicrobials from herbs, spices, and plants. In: Watson, R. R., & Preedy, V. R. (Ed.), Fruits, vegetables, and herbs (pp. 551-578). London, UK: Academic Press.
Buchaillot, A., Caffin, N., & Bhandari, B. (2009). Drying of lemon myrtle (Backhousia citriodora) leaves: Retention of volatiles and color. Dry Technology, 27, 445-50. https://doi.org/10.1080/07373930802683740
Calín-Sánchez, A., Figiel, A., Lech, K., Szumny, A., & Carbonell-Barrachina, A. (2013). Effects of drying methods on the composition of thyme (Thymus vulgaris L.) essential oil. Dry Technology, 31, 224-235. https://doi.org/10.1080/07373937.2012.725686
Calvo-Irabien, L. M., Yam-Puc, J. A., Dzib, G., Escalante-Erosa, F., & Peña-Rodriguez, L. M. (2009). Effect of postharvest drying on the composition of mexican oregano (Lippia graveolens) essential oil. Journal of Herbs, Spices & Medicinal Plants, 15, 281-287. https://doi.org/10.1080/10496470903379001
Caputo, L., Amato, G., de Bartolomeis, P., De Martino, L., Manna, F., Nazzaro, F., De Feo, V., & Barba, A. A. (2022). Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Scientific Reports, 12, 3845. https://doi.org/10.1038/s41598-022-07841-w
Choe, E., & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5, 169-86. https://doi.org/10.1111/j.1541-4337.2006.00009.x
Chua, L. Y. W., Chong, C. H., Chua, B. L., & Figiel, A. (2019). Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: A review. Food and Bioprocess Technology, 12, 450–76. https://doi.org/10.1007/s11947-018- 2227-x
De Sousa, D. P. (2011). Analgesic-like activity of essential oils constituents. Molecules, 16, 2233-2252. https://doi.org/10.3390/molecules16032233
Díaz-Maroto, M. C., Perez-Coello, M. S., & Cabezudo, M. D. (2002). Effect of drying method on the volatiles in bay leaf (Laurus nobilis l.). Journal of Agricultural and Food Chemistry, 50, 4520-4524. https://doi.org/10.1021/jf011573d
Ebadi, M. T., Azizi, M., Sefidkon, F., & Ahmadi, N. (2015). Influence of different drying methods on drying period, essential oil content and composition of Lippia citriodora kunth. Journal of Applied Research on Medicinal and Aromatic Plants, 2, 182-187. https://doi.org/10.1016/j.jarmap.2015.06.001
Embuscado, M. E. (2015). Herbs and spices as antioxidants for food preservation. In Shahidi, F. (Ed.), Antioxidants for food preservation (pp. 251-83). Cambridge, UK: Woodhead.
Fennell, C. W., Light, M. E., Sparg, S. G., Stafford, G. I., & Van Staden, J. (2004). Assessing African medicinal plants for efficacy and safety: Agricultural and storage practices. Journal of Ethnopharmacology, 95, 113-121.‏ https://doi.org/10.1016/j.jep.2004.05.025
Gangwar, A., Tewari, G., Pande, C., Prakash, O., Kanyal, B., Tewari, L. M., Joshi, M., & Siddiqui, A. (2024). Effect of drying conditions on the chemical compositions, molecular docking interactions and antioxidant activity of Hedychium spicatum Buch.-Ham. Rhizome essential oil. Scientific Reports, 14, 28568.‏ https://doi.org/10.1038/s41598-024-79712-5
Hashemi Moghaddam, H., Sefidkon, F., Jafari, A. A., & Kalate Jari, S. (2020). Effects of drying methods on the essential oil content and composition of Nepeta binaludensis Jamzad. Journal of Medicinal plants and By-Products, 9, 207-214. https://doi.org/10.22092/jmpb.2020.123121
Hazrati, S., Lotfi, K., Govahi, M., & Ebadi, M. T. (2021). A comparative study: Influence of various drying methods on essential oil components and biological properties of Stachys lavandulifolia. Food Science & Nutrition, 9, 2612-2619.‏ https://doi.org/10.1002/fsn3.2218
Karimi, S., Layeghinia, N., & Abbasi, H. (2021). Microwave pretreatment followed by associated microwave-hot air drying of Gundelia tournefortii L.: Drying kinetics, energy consumption and quality characteristics. Heat and Mass Transfer, 57, 133-146.‏ https://doi.org/10.1007/s00231-020-02948-0
Khangholil, S., & Rezaeinodehi, A. (2008). Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran. Pakistan Journal of Biological Sciences, 11, 934-7. http://dx.doi.org/10.3923/pjbs.2008.934.937
Mirzania, F., Sarrafi, Y., & Farimani, M. M. (2019). Comparative evaluation of chemical compositions and biological activities of wild and cultivated Froriepia subpinnata L. essential oils. Journal of Agricultural Science and Technology, 21, 331-340. http://dorl.net/dor/20.1001.1.16807073.2019.21.2.1.2
Mohammadzadeh, M., Mahmoudi, R., & Ghajarbeygi, P. (2018). Evaluation of chemical composition and antibacterial properties of Froriepia subpinnta essential oils from Guilan region: Before and after flowering. Journal of Essential Oil Bearing Plants, 21, 1119-1127. https://doi.org/10.1080/0972060x. 2018.1505555
Nazari, D., Badi, H. N., Mehrafarin, A., Taj-abadi, F., & Soltanipour, M. (2024). Expression of the changes in essential oil components of Shirazi thyme (Zataria multiflora Boiss.) as affected by various drying methods. Industrial Crops and Products, 220, 119222.‏ https://doi.org/10.1016/j.indcrop.2024.119222
Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying technologies: Vehicle to high-quality herbs. Food Engineering Reviews, 8, 164-80. https://doi.org/10.1007/s12393-015-9128-9
Ozdemir, N., Ozgen, Y., Kiralan, M., Bayrak, A., Arslan, N., & Ramadan, M. F. (2018). Effect of different dryingmethods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. Journal of Food Measurement and Characterization, 12, 820-825. https://doi.org/10.1007/s11694-017-9696-x
Pirbalouti, A. G., Mahdad, E., & Craker, L. (2013). Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food chemistry, 141, 2440-2449.‏ https://doi.org/10.1016/j.foodchem.2013.05.098
Qin, H. W., Yang, T. M., Yang, S. B., Yang, M. Q., Wang, Y. Z., & Zhang, J. Y. (2022). Effects of different pre-drying and drying methods on volatile compounds in the pericarp and kernel of Amomum tsao-ko. Frontiers in Plant Science, 13, 803776.‏ https://doi.org/10.3389/fpls.2022.803776
Quintans-Júnior, L. J., Souza, T. T., Leite, B. S., Lessa, N. M., Bonjardim, L. R., Santos, M. R., Alves, P. B., Blank, A. F., & Antoniolli, A. R. (2008). Phythochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine, 15, 619-24. https://doi.org/10.1016/j.phymed.2007.09.018
Rahimmalek, M., & Goli, S. H. (2013). Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp daenensis. Celak leaves. Industrial Crops and Products, 42, 613-9. https://doi.org/10.1016/j.indcrop.2012. 06.012
Rao, L. J., Singh, M., Raghavan, B., & Abraham, K. O. (1998). Rosemary (Rosmarinus officinalis L.): Impact of drying on its flavor quality. Journal of Food Quality, 21, 107-15. http://dx.doi.org/10.1111/j.1745-4557. 1998.tb00508.x
Rasekh, M., Karami, H., Kamruzzaman, M., Azizi, V., & Gancarz, M. (2023). Impact of different drying approaches on VOCs and chemical composition of Mentha spicata L. essential oil: A combined analysis of GC/MS and E-nose with chemometrics methods. Industrial Crops and Products, 206, 117595.‏ https://doi.org/10.1016/j.indcrop.2023.117595
Ropelewska, E., Sabanci, K., & Aslan, M. F. (2022). The use of digital color imaging and machine learning for the evaluation of the effects of shade drying and open-air sun drying on mint leaf quality. Applied Sciences, 13, 206.‏ https://doi.org/10.3390/app13010206
Sarfaraz, D., Rahimmalek, M., Sabzalian, M. R., Gharibi, S., Matkowski, A., & Szumny, A. (2023). Essential oil composition and antioxidant activity of oregano and marjoram as affected by different light-emitting diodes. Molecules, 28, 3714. https://doi.org/10.3390/molecules28093714
Sobatinasab, Z., Rahimmalek, M., Etemadi, N., & Szumny, A. (2024). Evaluation of different drying treatments with respect to essential oil components, phenolic and flavonoid compounds, and antioxidant capacity of ajowan (Trachyspermum ammi L.). Molecules, 29, 3264.‏ https://doi.org/10.3390/molecules29143264
Thamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61, 1763-1786.‏ https://doi.org/10.1080/10408398.2020.1765309
Vaseghi, Z., Tavakoli, O., & Nematollahzadeh, A. (2018). Rapid biosynthesis of novel Cu/ Cr/Ni trimetallic oxide nanoparticles with antimicrobial activity. Journal of Environmental Chemical Engineering, 6, 1898-1911. https://doi.org/10.1016/j.jece.2018.02.038