Effect of Acrostalagmus luteoalbus ACRO1 on Mortality of the Second-stage Juveniles of the Citrus Nematode Tylenchulus semipenetrans under Laboratory Conditions

Document Type : Research Paper

Authors

Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

10.22099/iar.2025.51197.1634

Abstract

This study investigates the nematicidal activity of Acrostalagmus luteoalbus ACRO1 as a potential biocontrol agent against the citrus nematode Tylenchulus semipenetrans under laboratory conditions. The ACRO1 isolate was cultured in potato extract-dextrose broth, and its nematicidal metabolites were extracted using ethyl acetate. Its effectiveness was assessed in comparison to Purpureocillium lilacinum, a known biocontrol agent, and abamectin, a chemical nematicide. ACRO1 demonstrated remarkable nematicidal efficacy, achieving an average mortality rate of 81.5% within 72 hours, significantly surpassing P. lilacinum (46.3%) and the negative control (6.5%). In a secondary experiment, ACRO1 induced 58.7% mortality in 72 hours, again outperforming P. lilacinum (26.2%) and the control (6.25%). Its cell-free culture extract exhibited rapid activity, reaching 76.0% mortality within 24 hours, while its metabolites achieved complete nematicidal efficacy with 100% mortality. By comparison, abamectin induced mortality rates of 53.2%, 62.2%, and 100% at concentrations of 5 ppm, 10 ppm, and 3%, respectively. These findings underscore ACRO1’s potential as an effective and environmentally friendly alternative to synthetic nematicides, offering a sustainable solution for managing the citrus nematode, a persistent threat to global citrus production.

Keywords

Main Subjects


Article Title [Persian]

تأثیر Acrostalagmus luteoalbus ACRO1 بر مرگ و میر سن دو نماتد مرکبات Tylenchulus semipenetrans در شرایط آزمایشگاهی

Authors [Persian]

  • رضا قرین
  • اکبر کارگربیده
  • مریم میرطالبی
بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

در این مطالعه، توانایی نماتدکشی Acrostalagmus luteoalbus ACRO1 در برابر نماتد مرکبات Tylenchulus semipenetrans به‌عنوان یک عامل مهار زیستی بالقوه در شرایط آزمایشگاهی مورد بررسی قرار گرفت. جدایه ACRO1 در محیط کشت مایع عصاره سیب‌زمینی-دکستروز کشت داده شد و متابولیت‌های آن با استفاده از اتیل استات استخراج شدند. کارایی جدایه ACRO1 در برابر نماتد مرکبات با عامل مهارزیستی شناخته شده Purpureocillium lilacinum و نماتدکش شیمیایی آبامکتین مقایسه گردید. نتایج آزمایش نشان داد که 72 ساعت پس از شروع آزمایش جدایه ACRO1 باعث میانگین مرگ و میر 81/5% شد که بسیار بالاتر از شاهد منفی (6/5%) و P. lilacinum (46/3%) بود. در آزمایش دوم جدایهACRO1 به طور متوسط نرخ مرگ و میر 58/7% را در 72 ساعت پس از شروع آزمایش نشان داد که بسیار بالاتر از شاهد منفی (6/25%) و P. lilacinum (26/2%) بود. عصاره آنزیمی بدون اسپور جدایه ACRO1 منجر به نرخ مرگ و میر 76% پس از 24 ساعت شد در حالی که نرخ مرگ و میر متابولیت‏های ثانویه این جدایه 100% بود. در مقایسه، آبامکتین شیمیایی میزان مرگ و میر به ترتیب 53/2، 62/2 و 100 درصد در غلظت های 5 پی پی ام، 10 پی پی ام و 3 درصد داشت. این یافته‌ها قابلیت جدایه ACRO1 را به‌عنوان یک جایگزین مؤثر و سازگار با محیط‌زیست برای نماتدکش‌های شیمیایی نشان می‌دهد، که می‌تواند برای مدیریت نماتد مرکبات به عنوان یک تهدید دائمی تولید جهانی مرکبات، رویکردی پایدار را ارائه دهد.

Keywords [Persian]

  • خصوصیت نماتدکشی
  • متابولیت‌های ثانویه قارچی
  • مهار زیستی
Banihashemi, Z. (2010). Reaction of Cucumis melo cultivars to races of Fusarium oxysporum f. sp. melonis the cause of melon vascular wilt. Iranian Journal of Plant Pathology, 46, 5–7. (In Persian)
Bhagawati, B., Choudhary, B. N., & Kurulkar, U. (2021). Bio management of citrus nematode, Tylenchulus semipenetrans infecting citrus in Assam. Indian Journal of Nematology, 51(2), 123-128.‏ https//doi.org/10.5958/0974-4444.2021.00019.6
Bondarenko, S. A., Ianutsevich, E. A., Sinitsyna, N. A., Georgieva, M. L., Bilanenko, E. N., & Tereshina, B. M. (2018). Dynamics of the cytosol soluble carbohydrates and membrane lipids in response to ambient pH in alkaliphilic and alkalitolerant fungi. Microbiology, 87(1), 21-32.‏ https://doi.org/10.1134/S0026261718010034
Bozbuga, R., Yildiz, S., Yuksel, E., Özer, G., Dababat, A. A., & İmren, M. (2023). Nematode–citrus plant interactions: Host preference, damage rate and molecular characterization of citrus root nematode Tylenchulus semipenetrans. Plant Biology, 25(6), 871-879.‏ https://doi.org/10.1111/plb.13566
Buyan, Z., Zhifeng, L., Qinqin, L., Ling, Z., Changgeng, Y., Liyun, W., & Yulin, S. (2023). Molecular identification, secondary metabolites and biological activities of a deep-sea-derived fungus 101#. Journal of Tropical Oceanography, 42(5), 104-114.‏ https://doi.org/10.11978/2022242
Cao, J., Li, X. M., Li, X., Li, H. L., Konuklugil, B., & Wang, B. G. (2021). Uncommon N‐Methoxyindolediketopiperazines from Acrostalagmus luteoalbus, a marine algal isolate of endophytic fungus. Chinese Journal of Chemistry, 39(10), 2808-2814.‏ https://doi.org/10.1002/cjoc.202100368
Cayrol, J. C., Djian, C., & Pijarowski, L. (1989). Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue de Nematologie, 12(4), 331-336.‏
Echeverrigaray, S., Zacaria, J., & Beltrão, R. (2010). Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology, 100(2), 199-203.‏ https://doi.org/10.1094/PHYTO-100-2-0199
El-Marzoky, A. M., Elnahal, A. S., Jghef, M. M., Abourehab, M. A., El-Tarabily, K. A., & Ali, M. A. (2023). Purpureocillium lilacinum strain AUMC 10620 as a biocontrol agent against the citrus nematode Tylenchulus semipenetrans under laboratory and field conditions. European Journal of Plant Pathology, 167(1), 59-76.‏ https://doi.org/10.1007/s10658-023-02684-1
Gharin, R. (2023). Study of the inhibitory effect of the fungi isolated from vermicompost of arugula (Eruca sativa Mill.) on the root-knot nematode Meloidogyne javanica in tomato. (Master’s thesis, Shiraz University, Shiraz)
He, Q., Wang, D., Li, B., Maqsood, A., & Wu, H. (2020). Nematicidal evaluation and active compounds isolation of Aspergillus japonicus ZW1 against root-knot nematodes Meloidogyne incognita. Agronomy, 10(9), 1222.‏ https://doi.org/10.3390/agronomy10091222
Jensen, H. L. (1963). Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agriculturae Scandinavica, 13(4), 404-412.‏ https://doi.org/10.1080/00015126309435665
Kerry, B. R. (1990). An assessment of progress toward microbial control of plant-parasitic nematodes. Journal of Nematology, 22(4S), 621.‏
Khoshkhoo, N., Hedin, P. A., & McCarty Jr, J. C. (1994). Terpenoid aldehydes in root-knot nematode susceptible and resistant cotton plants. Journal of Agricultural and Food Chemistry, 42(1), 204-208.‏ https://doi.org/10.1021/jf00037a037
Labiadh, M., Mhamdi, B., Loulou, A., & Sadreddine, K. (2023). Impact of rhizobacteria community of citrus root on Tylenchulus semipenetrans and on citrus plant growth. Biocontrol Science and Technology, 33(3), 241-257.‏ https://doi.org/10.1080/09583157.2023.2175785
Lawal, I., Fardami, A. Y., Ahmad, F. I. I., Yahaya, S., Abubakar, A. S., Sa’id, M. A., Musa, M., & Maiyadi, K. A. (2022). A review on nematophagus fungi: A potential nematicide for the biocontrol of nematodes. Journal of Environmental Bioremediation and Toxicology, 5(1), 26-31. https://doi.org/10.54987/jebat.v5i1.677
Meyer, S., Huettel, R., Liu, X. Z., Humber, R., Juba, J., & Nitao, J. (2004). Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology, 6(1), 23-32.‏
Poveda, J., Abril-Urias, P., & Escobar, C. (2020). Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11, 992-1006.‏ https://doi.org/10.3389/fmicb.2020.00992
Rojas, N. L., Cavalitto, S. F., Cabello, M., Hours, R. A., & Voget, C. E. (2008). Alkaline polysaccharidases produced in solid state cultures by alkalophilic fungi isolated from Argentina. Journal of Pure and Applied Microbiology, 2(1), 1-10.‏
Saadoon, S. M., Sergany, M. I., Mona, H. E., Reham, A. M., & Gad, S. B. (2022). The efficiency of using some natural compounds for management of citrus nematode Tylenchulus semipenetrans. Arab Journal of Plant Protection, 40(4), 346. https://doi.org/10.22268/AJPP-40.4.346350
Santra, H. K., & Banerjee, D. (2023). Antifungal activity of volatile and non-volatile metabolites of endophytes of Chloranthus elatior Sw. Frontiers in Plant Science, 14, 1156323.‏ https://doi.org/10.3389/fpls.2023.1156323
Sweelam, M. E., Abokorah, M. S., Taka, S. M. A., & Ellatief, S. M. A. (2019). Biological control of the citrus nematode, Tylenchulus semipenetrans attacking citrus sinensisnaval orange trees. Menoufia Journal of Plant Protection, 4(5), 179-188.‏ https://dx.doi.org/10.21608/mjapam.2019.123021
Verdejo-Lucas, S., & Kaplan, D. T. (2002). The citrus nematode: Tylenchulus semipenetrans. In Plant resistance to parasitic nematodes. (pp. 207-219). Wallingford UK: CABI Publishing.‏
Wang, F.-Z., Huang, Z., Shi, X.-F., Chen, Y.-C., Zhang, W.-M., Tian, X.-P., Li, J., Zhang, S (2012). Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorganic & Medicinal Chemistry Letters, 22(23), 7265-7267.‏ https://doi.org/10.1016/j.bmcl.2012.08.115
Wang, L., Xu, Y., Li, S., Li, C., & Xue, A. G. (2011). Effects of metabolites of Gliocladium roseum on egg hatch and juvenile mortality of Meloidogyne incognita. Soybean Science, 30, 818-822.‏
Wen, Y., Meyer, S. L., Masler, E. P., Zhang, F., Liao, J., Wei, X., & Chitwood, D. J. (2013). Nematotoxicity of drupacine and a cephalotaxus alkaloid preparation against the plant‐parasitic nematodes Meloidogyne incognita and Bursaphelenchus xylophilus. Pest Management Science, 69(9), 1026-1033.‏ https://doi.org/10.1002/ps.3548
Whitehead, A. G., & Hemming, J. R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology, 55(1), 25-38. https://doi.org/10.1111/j.1744-7348.1965.tb07864.x
Xu, Y. Y., Lu, H., Wang, X., Zhang, K. Q., & Li, G. H. (2015). Effect of volatile organic compounds from bacteria on nematodes. Chemistry & Biodiversity, 12(9), 1415-1421.‏ https://doi.org/10.1002/cbdv.201400342
Yu, G., Wang, Y., Yu, R., Feng, Y., Wang, L., Che, Q., Gu, Q., Li, D., Li, J., Zhu, T. (2018). Chetracins E and F, cytotoxic epipolythiodioxopiperazines from the marine-derived fungus Acrostalagmus luteoalbus HDN13-530. RSC Advances, 8(1), 53-58.‏ https://doi.org/10.1039/C7RA12063J
Zarrin, M., Rahdar, M., & Gholamian, A. (2015). Biological control of the nematode infective juveniles of Trichostrongylidae family with filamentous fungi. Jundishapur Journal of Microbiology, 8(3)., 1-20. https://doi.org/10.5812/jjm.17614
Zoubi, B., Mokrini, F., Dababat, A. A., Amer, M., Ghoulam, C., Lahlali, R., Laasli, S, E., Khfif, Kh., Imren, M., Akachoud, O., Benkebboura, A., Housseini, A, I., & Qaddoury, A. (2022). Occurrence and geographic distribution of plant-parasitic nematodes associated with citrus in Morocco and their interaction with soil patterns. Life, 12(5), 637.‏ https://doi.org/10.3390/life12050637