Effects of aqueous extracts and total protein content from different plant species on the inhibition of Tobacco mosaic virus infection

Document Type : Research Paper

Authors

1 Department of Plant Protection, College of Agriculture, Shahrekord University, Shahrekord, I. R. Iran

2 Department of Horticultural Sciences, College of Agriculture, Shahrekord University, Shahrekord, I. R. Iran

10.22099/iar.2025.51800.1652

Abstract

This study examined the inhibitory properties of aqueous extract and total protein of four plant species: carnation (Dianthus caryophyllus), Indian privet (Clerodendrum inerme), prickly pear cactus (Opuntia stricta), and periwinkle (Catharanthus roseus) against Tobacco mosaic virus (TMV). The aqueous extract and total protein from carnation, Indian privet, and cactus significantly reduced TMV infection in the local lesion host, Nicotiana glutinosa. Conversely, the periwinkle extract did not demonstrate a significant inhibitory effect on TMV. Results showed that the inhibitory effects of carnation and Indian privet were more effective than those of the cactus extract. The inhibitory effects of the plant extracts applied on the N. glutinosa leaves diminished after washing with water. Bioassay tests using total protein from carnation, Indian privet, and cactus indicated that the inhibitory effects of these proteins were comparable to those of their respective aqueous extracts. Thus, it can be inferred that the inhibitory agents present in these plants are proteins. The findings from both the aqueous extracts and the proteins extracted from carnation, Indian privet, and cactus suggest that the inhibitory effects of these substances are localized and not systemic, being confined to the leaves that were treated either simultaneously or prior to the virus inoculation. When N. tabacum (var. Turkish), a systemic host, was inoculated with TMV mixed with these plant extracts, there was no evidence of inhibition or a reduction in the incubation period. Therefore, using these extracts to manage TMV infections in its main systemic hosts may be ineffective. 

Keywords

Main Subjects


Article Title [Persian]

اثر عصاره آبی و پروتئینهای چهار گونه گیاهی در بازداری از آلودگی ویروس موزاییک توتون

Authors [Persian]

  • فاطمه کاهانی 1
  • مجید صیام پور 1
  • مسعود قاسمی قهساره 2
1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ج. ا. ایران
2 گروه باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ج. ا. ایران
Abstract [Persian]

در این تحقیق اثر بازدارندگی عصاره آبی و پروتئین‌های کل چهار گیاه شامل میخک (Dianthus caryophyllus)، شمشاد اهوازی (Clerodendrum inerme)، کاکتوس اپونتیا (Opuntia stricta) و پروانش (Catharanthus roseus) بر ویروس موزائیک توتون بررسی شد. عصاره و پروتئین‌های کل استخراج شده از میخک، شمشاد اهوازی و کاکتوس توانستند وقوع آلودگی‌های موفق ناشی از TMV را در میزبان لکه موضعی توتون گلوتینوزا (Nicotiana glutinosa) کاهش دهند. عصاره آبی پروانش تاثیر خاصی بر TMV نداشت. مقایسه اثر عصاره‌ها نشان داد که توان بازدارندگی عصاره میخک و شمشاد اهوازی با یکدیگر قابل مقایسه بوده و بیشتر از اثر بازدارندگی کاکتوس است. نتایج همچنین نشان داد که عامل بازدارنده در عصاره‌های میخک، شمشاد اهوازی و کاکتوس در سطح گیاهان تیمار شده فعالیت داشته و پس از شستشو با آب فعالیت آن از بین می‌رود. اثر بازدارندگی با استفاده از پروتئین کل استخراج شده از میخک، شمشاد اهوازی و کاکتوس مشابه با اثر عصاره‌های آبی این گیاهان بود. از این رو به‌احتمال عامل بازدارنده موجود در این گیاهان ماهیت پروتئینی دارد. نتایج به‌دست آمده نشان داد که اثر بازدارندگی عصاره‌های آبی یا پروتنین‌های میخک، شمشاد اهوازی سیتمیک نبوده و تنها در برگ‌هایی که قبل یا همزمان با تلقیح TMV مورد استفاده قرار گرفته بودند موثر بود. تلقیح همزمان عصاره گیاهان مذکور و TMV به میزبان سیستمیک توتون رقم تورکیش (N. tabacum var. Turkish) باعث هیچ گونه کنترل و یا کاهش دوره نهفتگی نشد. در نتیجه استفاده از این عصاره‌ها در کنترل TMV در میزبان‌های اصلی مانند توتون رقم تورکیش کارایی چندانی نشان نداد.

Keywords [Persian]

  • اثر ضدویروسی
  • سیستمیک
  • عصاره گیاهی
  • گلوتینوزا
  • لکه موضعی
Adams, M. J., & Antoniw, J. F. (2006). DPV web: A comprehensive database of plant and fungal virus genes and genomes. Nucleic Acids Research, 34(suppl_1), D382-D385. https://doi.org/10.1093/nar/gkj023
Ahmad, A., Davies, J., Randall, S., & Skinner, G. R. B. (1996). Antiviral properties of extract of Opuntia streptacantha. Antiviral Research, 30(2-3), 75-85. https://doi.org/10.1016/0166-3542(95)00839-x
Awasthi, L. P., & Verma, H. N. (2006). Boerhaavia diffusa–A wild herb with potent biological and antimicrobial properties. Asian Agri-History, 10(1), 55-68.
Awasthi L. P., & Singh S. H. Y. A. M. (2009). Management of ringspot disease of papaya through plant products. Indian Phytopathology, 62, 369-375.
Awasthi, L. P., Verma, H. N., & Kluge, S. (2016). A possible mechanism of action for the inhibition of plant viruses by an antiviral glycoprotein isolated from Boerhaavia diffusa roots. Journal of Virology and Antiviral Research, 5(3), 2. https://doi.org/10.4172/2324-8955.1000159
Biniaz, Y., Ahmadi, F., Niazi, A., & Afsharifar, A. (2023). Antiviral activity of three plant species, Rhus coriaria, Chenopodium quinoa, and Ailanthus altissima against tobacco mosaic Virus. Journal of Agricultural Science and Technology, 25(1), 199-211. https://doi.org/10.1080/09670874.2021.1985653
Cho, H. J., Lee, S. J., Kim, S., & Kim, B. D. (2000). Isolation and characterization of cDNAs encoding ribosome inactivating protein from Dianthus sinensis L. Molecules and Cells, 10(2), 135-141. https://doi.org/10.1007/s10059-000-0135-0
Domashevskiy, A. V., Williams, S., Kluge, C., & Cheng, S. Y. (2017). Plant translation initiation complex eIF iso 4F directs pokeweed antiviral protein to selectively depurinate uncapped Tobacco etch virus RNA. Biochemistry, 56(45), 5980-5990. https://doi.org/10.1021/acs.biochem.7b00598
Duarte, L. M. L., Alexandre, M. A. V., Chaves, A. L. R., dos Santos, D. Y. A. C., de Souza, A. C. O., & Bernacci, L. C. (2021). Plant-virus infection inhibitors: The great potential of Caryophyllales species. Physiological and Molecular Plant Pathology, 113, 101597. https://doi.org/10.1016/j.pmpp.2020.101597
Hull, R. (2013). Plant virology. New Yourk: Academic press.
Mahdy, A. M. M., Fawzy, R. N., Hafez, M. A., Mohamed, H. A., & Shahwan, E. S. (2007). Inducing systemic resistance against Bean yellow mosaic potyvirus using botanical extracts. Egyptian Journal of. Virology, 4, 129-145. https://doi.org/10.21608/JPPP.2017.46340
Ostermann, W. D., Meyer, U., & Leiser, R. M. (1987). Induction of plant virus resistance: 2. leaf extract from carnation plants (Dianthus caryophyllus L.) as inducer of resistance. Zentralblatt für Mikrobiologie, 142(3), 229-238. https://doi.org/10.1016/S0232-4393(87)80020-3
Pal, D., & Lal, P. (2023). Plants showing anti-viral activity with emphasis on secondary metabolites and biological screening. Anti-Viral Metabolites from Medicinal Plants, 29-95. https://doi.org/10.1007/978-3-031-12199-9_2
Park, S. R., Lim, C. Y., Kim, D. S., & Ko, K. (2015). Optimization of ammonium sulfate concentration for purification of colorectal cancer vaccine candidate recombinant protein GA733-FcK isolated from plants. Frontiers in Plant Science, 6, 1040. https://doi.org/10.3389/fpls.2015.01040
Praveen, S., Tripathi, S., & Varma, A. (2001). Isolation and characterization of an inducer protein (Crip-31) from Clerodendrum inerme leaves responsible for induction of systemic resistance against viruses. Plant Science, 161(3), 453-459. https://doi.org/10.1016/S0168-9452(01)00425-3
Pushpa, R., Nishant, R., Navin, K., & Pankaj, G. (2013). Antiviral potential of medicinal plants: An overview. International Research Journal of Pharmacy, 4(6), 8-16. https://doi10.7897/2230-8407.04603
Ragetli, H. W. J., & Weintraub, M. (1962). Purification and characteristics of a virus inhibitor from Dianthus caryophyllus L.: II. Characterization and mode of action. Virology, 18(2), 241-248. https://doi.org/10.1016/0042-6822(62)90010-7
Rasoulpour, R., Afsharifar, A., & Izadpanah, K. (2018). Antiviral activity of prickly pear (Opuntia ficus-indica (L.) Miller) extract: Opuntin B, a second antiviral protein. Crop Protection, 112, 1-9. https://doi.org/10.1016/j.cropro.2018.04.017
Rasoulpour, R., Afsharifar, A., Izadpanah, K., & Aminlari, M. (2017). Purification and characterization of an antiviral protein from prickly pear (Opuntia ficus-indica (L.) Miller) cladode. Crop Protection, 93, 33-42. https://doi.org/10.1016/j.cropro.2016.11.005
Taylor, S., Massiah, A., Lomonossoff, G., Roberts, L. M., Lord, J. M., & Hartley, M. (1994). Correlation between the activities of five ribosome‐inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. The Plant Journal, 5(6), 827-835. https://doi.org/10.1046/j.1365-313x.1994.5060827.x
Van Kammen, A., Noordam, D., & Thung, T. H. (1961). The mechanism of inhibition of infection with tobacco mosaic virus by an inhibitor from carnation sap. Virology, 14(1), 100-108. https://doi.org/10.1016/0042-6822(61)90137-4
Verma, H. N., & Baranwal, V. K. (2011). Potency of plant products in control of virus diseases of plants. In Dubey, N. K. (Ed.) Natural products in plant pest management (pp. 149-174). Wallingford UK: CABI.
Verma, H. N., & Prasad, V. (1992). Virus inhibitors and inducers of resistance: Potential avenues for biological control of viral diseases. In Mukerji, K. G., Tewari, J. P., Arora, D. K. & Saxena, G. (Eds) Recent development in biocontrol of plant diseases (pp. 81-110). Aditya Books Pvt. Ltd, New Delhi, India.
Verma, H. N., Shalini Srivastava, S. S., Varsha, V., & Dhirendra Kumar, D. K. (1996). Induction of systemic resistance in plants against viruses by a basic protein from Clerodendrum aculeatum leaves. Phytopathology 5, 485-492. https://doi.org/10.1094/Phyto-86-485
Wong, K. L., Wong, R. N. S., Zhang, L., Liu, W. K., Ng, T. B., Shaw, P. C., Kwok, P. Ch. L., Lai, Y. M., Zhang, Zh. J., Zhang, Y. T., Cheung, H. P., Lu, J., & Sze, S. C. W. (2014). Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chinese Medicine, 9, 1-14. https://doi.org/10.1186/1749-8546-9-19
Yang, J., Jin, G. H., Wang, R., Luo, Z. P., Yin, Q. S., Jin, L. F., & Lin, F. C. (2012). Spinacia oleracea proteins with antiviral activity against tobacco mosaic virus. African Journal of Biotechnology, 11(26), 6802-6808. https://doi.org/10.5897/AJB11.2654