Effect of aging on soil phosphorus fractions treated with poultry manure and its derived biochar

Document Type : Research Paper

Authors

Department of Soil Science, Faculty of Agriculture, Malayer University, Malayer, I. R. Iran

Abstract

Nowadays, organic fertilizers such as biochar and manure in organic agriculture are widely used due to their considerable benefits. A new method should be provided to supply enough nutrients without polluting the environment. Converting animal waste to biochar was suggested as a sustainable agriculture practice to supply enough nutrients and improve soil quality. This study aims to assess the effect of poultry manure (PM) and its derived biochar (PM-BC), as well as time on distribution of soil phosphorous (P) fractions and release, along with phosphatase activity. Soil samples were treated with PM and PM-BC at three levels including 0.5%, 1%, and, 1.5% (w/w). Then, it was incubated at 25 °C with constant moisture equal to the field capacity (FC) for 140 days. In the next step, the soil samples were taken at time intervals of three hours for 1, 3, 7, 14, 28, 42, 63, 84, 112, and 140 days to evaluate the P fractions and phosphatase activity. In the next procedure, kinetic equations were fitted to the data. The results revealed a significant difference between both treatments. However, different levels of treatments did not affect the P concentration in exchangeable (EXC), carbonate (CAB), oxide (OX), and organically bound fractions significantly. On average, the highest contents in the EXC fraction were found in 1.5% of BC treatment (PM-BC) (23 mg kg-1). In addition, the lowest P concentration in EXC fraction was observed in the control soil (8.6 mg kg-1). The P content in the OX fraction increased up to the 28th day of the incubation and continued to decrease until its end. The highest P concentration in the OX fraction was found in 1.5% PM, which was about 71% more than the control soil. An increase in time decreased the organically bound fraction. The first order (R2 = 0.97 and 0.98; S.E. = 0.14 and 0.11 for PM and PM-BC, respectively) and power equation (R2 = 0.96 and 0.98; S.E. = 0.15 and 0.21 for PM and PM-BC, respectively) described the P release from different fractions appropriately. Unlike acid phosphatase activity, PM and PM-BC increased alkaline phosphatase activity. Based on the results, the manure was more effective than biochar. No significant difference was reported among various levels of treatments (0.5%, 1%, and 1.5%), indicating the cost-effectiveness of low treatment levels.

Keywords

Main Subjects


Article Title [Persian]

اثر زمان بر اجزای فسفر خاک تیمار شده با کودمرغی و بیوچار حاصل از آن

Authors [Persian]

  • اکبر اسدیان
  • زهرا وارسته خانلری
  • شهریار مهدوی
گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ج. ا. ایران
Abstract [Persian]

امروزه کودهای آلی مانند بیوچار و کود دامی به دلیل فواید قابل توجه، در کشاورزی ارگانیک کاربرد فراوانی دارند. بنابراین بایستی روش جدیدی برای تامین مواد مغذی کافی، بدون آلودگی محیط زیست ارائه شود. تبدیل فضولات حیوانی به بیوچار به عنوان یک عمل کشاورزی پایدار جهت تامین مواد مغذی کافی و بهبود کیفیت خاک پیشنهاد گردید. این مطالعه با هدف بررسی اثر کود مرغی (PM) و بیوچار حاصل از آن (PM-BC)، در طی زمان بر توزیع اجزای فسفر (P) خاک و فعالیت آنزیم فسفاتازها انجام شد. نمونه ­های خاک با PM و PM-BC در سه سطح شامل 0/5، 1 و 1/5 درصد (وزنی/وزنی) تیمار شدند. سپس در دمای 25 درجه سانتی­گراد با رطوبت ثابت برابر با ظرفیت مزرعه (FC) به مدت 140 روز انکوباسیون گردیدند. نمونه­برداری از خاک در فواصل زمانی سه ساعت، 1، 3، 7، 14، 28، 42، 63، 84، 112 و 140 روز برای ارزیابی اجزای فسفر و فعالیت آنزیم فسفاتازها انجام شد. سپس معادلات سینتیکی بر داده­ها برازش گردید. نتایج نشان داد که بین هر دو تیمار تفاوت معنی­داری وجود دارد. با این حال، سطوح مختلف تیمارها بر غلظت فسفر در اجزای قابل تبادل (EXC)، کربناته (CAB)، اکسیدی (OX)، و آلی تأثیر معنی‌داری نداشتند. به طور میانگین، بیشترین مقدار فسفر در جز EXC در 1/5 درصد بیوچار کود مرغی (PM-BC) (23 میلی­گرم در کیلوگرم) و کمترین در خاک شاهد (8/6 میلی­گرم در کیلوگرم) مشاهده گردید. محتوای P در جز OX تا روز 28 انکوباسیون افزایش و از آن به بعد تا پایان انکوباسیون کاهش یافت. بیشترین غلظت فسفر در جز OX در 1/5 درصد PM یافت شد که حدود 71 درصد بیشتر از خاک شاهد بود. با افزایش زمان فسفر در جز آلی کاهش یافت. معادله مرتبه اول (R2=0/97 , 0/98 و SE=0/14 , 0/11 به ترتیب برای PM و PM-BC) و توانی (R2=0/98 , 0/96 و SE=0/15 , 0/21 به ترتیب برای PM و PM-BC) به ترتیب آزادسازی فسفر را از PM و PM-BC به خوبی توصیف کردند. برخلاف فعالیت آنزیم فسفاتاز اسیدی، PM و PM-BC باعث افزایش فعالیت فسفاتاز قلیایی شدند. بر اساس نتایج، کود دامی مؤثرتر از بیوچار بود. تفاوت معنی­داری بین سطوح مختلف تیمارها (0/5، 1 و 1/5 درصد) گزارش نشد که نشان­دهنده مقرون به صرفه بودن سطوح پایین تیمار است.

Keywords [Persian]

  • انکوباسیون
  • رهاسازی
  • سینتیک
  • فسفاتاز اسیدی و قلیایی
Akdeniz, N. (2019). A systematic review of biochar use in animal waste composting. Waste Management 88, 291-300. https://doi.org/10.1016/j.wasman.2019.03.054
Ann, Y., Reddy, K., & Delfino, J. (1999). Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering 14, 157-167.
Arancon, N. Q., Edwards, C.A., Lee, S., & Byrne, R. (2006). Effects of humic acids from vermicomposts on plant growth. EuropeanJournal of Soil Biology, 42, S65-S69.
Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337, 1-18. https://doi.org/10.1007/s11104-.-0464-5
Cao, D., Lan, Y., Yang, X., Chen, W., Jiang, L., Wu, Z., Li, N., & Han, X. (2023). Phosphorus fractions in biochar-amended soil—chemical sequential fractionation, 31P NMR, and phosphatase activity. Archives of Agronomy and Soil Science69(2), 169-181. https://doi.org/10.1080/03650340.2021.1967327
Cassity-Duffey, K., Cabrera, M., Mowrer, J., & Kissel, D. (2015). Titration and spectroscopic measurements of poultry litter pH buffering capacity. Journal of Environmental Quality 44, 1283-1292. https://doi.org/10.2134/jeq2014.11.0463
Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal, 2014, 506356. https://doi.org/10.1155/2014/506356
Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research 46, 437-444. https://doi.org/10.1071/SR08036
Cui, H-J., Wang, M. K., Fu, M-L., & Ci, E. (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of Soils and Sediments, 11, 1135. https://doi.org/10.1007/s11368-011-0405-9
DeLuca, T. H., Gundale, M., MacKenzie, M. D., Gao, S., & Jones, D. (2024). Biochar effects on soil nutrient transformations. In Biochar for environmental management. Taylor & Francis.
Du, Z., Wang, Y., Huang, J., Lu, N., Liu, X., Lou, Y., & Zhang, Q. (2014). Consecutive biochar application alters soil enzyme activities in the winter wheat–growing season. Soil Science, 179, 75-83. https://doi.org/10.1097/SS.0000000000000050
Eduah, J. O., Nartey, E. K., Abekoe, M. K., Breuning-Madsen, H., & Andersen, M. N.(2019). Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma, 341, 10-17. https://doi.org/10.1016/j.geoderma.2019.01.016
Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology 114, 644-653. https://doi.org/10.1016/j.biortech.2012.03.022
Farhangi-Abriz, S., Torabian, S., Qin, R., Noulas, C., Lu, Y., & Gao, S. (2021). Biochar effects on yield of cereal and legume crops using meta-analysis. Science of the Total Environment 775, 145869. https://doi.org/10.1016/j.scitotenv.2021.145869
Fei, Y-h., Chen, Y., Liu, C., & Xiao, T. (2019). Biochar addition enhances phenanthrene fixation in sediment. Bulletin of Environmental Contamination and Toxicology, 103, 163-168.
Feizi, M., Jalali, M., & Renella, G. (2017). Available alkalinity and N mineralization are key factors regulating soil pH value of an organically amended Iranian agricultural soil. Arid Land Research and Management, 31, 140-158. https://doi.or/10.1080/15324982.2016.1278055
Fleming, I., & Williams, D. H. (1966). Spectroscopic methods in organic chemistry. Germany: Springer
Garg, S., & Bahl, G. S. (2008). Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresource Technology 99, 5773-5777. https://doi.org/10.1016/j.biortech.2007.10.063
Gee, G. W., & Or, D. (2002). Methods of soil analysis: Part 4 physical methods JACOB H. DANE and G. CLARKE TOPP (ed.) Soil Science Society of America, (pp. 255-293).Wiley.
Glaser, B., & Lehr, V-I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9, 9338. https://doi.org/10.1038/s41598-019-45693-z.
Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15. https://doi.org/10.1016/j.soilbio.2016.08.001
Hemati Matin, N., Jalali, M., Antoniadis, V., Shaheen, S. M., Wang, J., Zhang, T., Wang, H., & Rinklebe, J. (2020). Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 241, 124888. https://doi.org/10.1016/j.chemosphere.2019.124888
Hong, C., & Lu, S. (2018). Does biochar affect the availability and chemical fractionation of phosphate in soils? Environmental Science and Pollution Research, 25, 8725-8734. https://doi.org/10.1007/s11356-018-1219-8
Idbella, M., Baronti, S., Giagnoni, L., Renella, G., Becagli, M., Cardelli, R., Maienza, A., Vaccari, F. P., & Bonanomi, G. (2024). Long-term effects of biochar on soil chemistry, biochemistry, and microbiota: Results from a 10-year field vineyard experiment. Applied Soil Ecology, 195, 105217. https://doi.org/10.1016/j.apsoil.2023.105217
Jackson, M. L. (2005). Soil chemical analysis: Advanced course. UW-Madison Libraries: Parallel Press.
Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., & Shi, J. (2016). Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: Amicrocosm incubation study. Chemosphere, 142, 128-135.
Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy11(10), 2010. https://doi.org/10.3390/agronomy11102010
Krämer, S., & Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32, 179-188.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43, 1812-1836.
Li, F., Liang, X., Niyungeko, C., Sun, T., Liu, F., & Arai, Y. (2019). Chapter two - effects of biochar amendments on soil phosphorus transformation in agricultural soils. In: Sparks DL (ed). Advances in Agronomy. (pp 131-172), Academic Press.
Liang, Y., Cao, X., Zhao, L., Xu, X., & Harris, W. (2014). Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: Effects of phosphorus nature and soil property. Journal of Environmental Quality, 43, 1504-1509. https://doi.org/10.2134/jeq2014.01.0021
Liu, S., Meng, J., Jiang, L., Yang, X., Lan, Y., Cheng, X., & Chen, W. (2017). Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology, 116, 12-22. https://doi.org/10.1016/j.apsoil.2017.03.020
Liu, X. H., & Zhang, X. C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. International Journal of Agriculture & Biology14(5), 745-750.
Ma, Y. L., & Matsunaka, T. (2013). Biochar derived from dairy cattle carcasses as an alternative source of phosphorus and amendment for soil acidity. Soil Science and Plant Nutrition, 59, 628-641.
Manolikaki, I. I., Mangolis, A., & Diamadopoulos, E. (2016). The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Journal of Environmental Management, 181, 536-543. https://doi.org/10.1016/j.jenvman.2016.07.012
Marinari, S., Masciandaro, G., Ceccanti, B., & Grego, S. (2000). Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72, 9-17.
Matin, N. H., Jalali, M., & Buss, W. (2020). Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. Chemosphere, 241, 124932. https://doi.org/10.1016/j.chemosphere.2019.124932
McDowell, R., & Sharpley, A. (2003). Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma, 112, 143-154.
Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2017). Effects of live wetland plant macrophytes on acidification, redox potential and sulphate content in acid sulphate soils. Soil Use and Management, 33(3), 471-481. https://doi.org/10.1111/sum.12362
Morshedizad, M., Panten, K., Klysubun, W., & Leinweber, P. (2018). Bone char effects on soil: Sequential fractionations and XANES spectroscopy. Soil4(1), 23-35. https://doi.org/10.5194/soil-4-23-2018
Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M. C., & Marinari, S. (2012). Soil enzymology: Classical and molecular approaches. Biology and Fertility of Soils, 48, 743-762.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 3 Chemical Methods5, 961-1010.
Ölinger, R., Margesin, R.,& Kandeler, E. (1996). Enzymes involved in phosphorus metabolism. In: Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (eds). Methods in soil biology. (pp, 208-227), Springer Berlin Heidelberg, Berlin, Heidelberg.
Paludan, C., & Morris, J. T. (1999). Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45, 197-221.
Pierzynski, G. M. (2000). Methods of phosphorus analysis for soils, sediments, residuals, and waters. North Carolina State University.
Poach, M. E., & Faulkner, S. P. (1998). Soil phosphorus characteristics of created and natural wetlands in the Atchafalaya Delta, LA. Estuarine, Coastal and Shelf Science, 46, 195-203. https://doi.org/10.1006/ecss.1997.0252
Qian, T., Zhang, X., Hu, J., & Jiang, H. (2013). Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 93, 2069-2075. https://doi.org/10.1016/j.chemosphere.2013.07.041
Rafique, M. I., Usman, A. R., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2020). In situ immobilization of Cr and its availability to maize plants in tannery waste–contaminated soil: Effects of biochar feedstock and pyrolysis temperature. Journal of Soils and Sediments, 20, 330-339. https://doi.org/10.1007/s11368-019-02399-z
Rao, B. K. R., Bailey, J., & Wingwafi, R. W. (2011). Comparison of three digestion methods for total soil potassium estimation in soils of Papua New Guinea derived from varying parent materials. Communications in Soil Science and Plant Analysis, 42, 1259-1265. https://doi.org/10.1080/00103624.2011.571740
Rasoulpoor, K., Marjani, A. P., & Nozad, E. (2020). Competitive chemisorption and physisorption processes of a walnut shell based semi-IPN bio-composite adsorbent for lead ion removal from water: Equilibrium, Kinetic and Thermodynamic studies. Environmental Technology & Innovation, 20, 101133. https://doi.org/10.1016/j.eti.2020.101133
Ravindiran, G., Rajamanickam, S., Janardhan, G., Hayder, G., Alagumalai, A., Mahian, O., Lam, S. S., & Sonne, C. (2024). Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar, 6, 62. https://doi.org/10.1007/s42773-024-00350-1
Saleem, A., Irshad, M., Eneji, A. E., Hassan, A., Mahmood, Q., & Irshad, U. (2017). Fractionation of phosphorus in soils amended with poultry manure co-composted with sugarcane and cabbage wastes. Biosciences and Plant Biology, 33(5), 1230-1241
Schneider, F., & Haderlein, S. B. (2016). Potential effects of biochar on the availability of phosphorus — mechanistic insights. Geoderma, 277, 83-90. https://doi.org/10.1016/j.geoderma.2016.05.007
Sun, D., Hale, L., Kar, G., Soolanayakanahally, R., & Adl, S. (2018). Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere, 194, 682-691. https://doi.org/10.1016/j.chemosphere.2017.12.035
Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574-578. https://doi.org/10.1016/j.cej.2013.10.081
Sun, Z., Hu, Y., Shi, L., Li, G., Han, J., Pang, Z., Liu, S., Chen, Y., & Jia, B. (2022). Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant, Soil and Environment, 68, 272-289. https://doi.org/10.17221/522/2021-PSE
Tipson, R. S., & Cohen, A. (1968). Reaction of some sulfonic esters of D-mannitol with methoxide; synthesis of 2, 3: 4, 5-dianhydro-D-iditol. Carbohydrate Research, 7, 232-243.
Toor, G. S., Hunger, S., Peak, J. D., Sims, J. T., & Sparks, D. L. (2006). Advances in the characterization of phosphorus in organic wastes: Environmental and agronomic applications. Advances in Agronomy89, 1-72. https://doi.org/10.1016/S0065-2113(05)89001-7
Vakal, S. V., Yanovska, A. O., Vakal, V. S., Artyukhov, A. Y., Shkola, V. Y., Yarova, T. Y., Dmitrikov, V. P., Krmela, J., & Malovanyy, M. S. (2021). Minimization of soil pollution as a result of the use of encapsulated mineral fertilizers. Journal of Ecological Engineering, 22, 221-230. https://doi.org/10.12911/22998993/128965
Waldrip, H. M., He, Z., & Erich, M. S. (2011). Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47, 407-418.
Wang, L., O’Connor, D., Rinklebe, Jr., Ok, Y. S., Tsang, D. C., Shen, Z., & Hou, D. (2020). Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications. Environmental Science & Technology, 54, 14797-14814.
Xu, G., Sun, J., Shao, H., & Chang, S. X. (2014). Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering, 62, 54-60. https://doi.org/10.1016/j.ecoleng.2013.10.027
Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., & Wang, D. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, 537-544.
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8-21. https://doi.org/10.1016/j.jenvman.2018.10.117
Yuan, J-H., Xu, R-K., Wang, N., & Li, J-Y. (2011). Amendment of acid soils with crop residues and biochars. Pedosphere, 21, 302-308. https://doi.org/10.1016/S1002-0160(11)60130-6
Ziadi, N., Zhang, X., Gagnon, B., & Manirakiza, E. (2020). Soil phosphorus fractionation after co-applying biochar and paper mill biosolids. Canadian Journal of Soil Science, 102, 53-63. https://doi.org/10.1139/cjss-2020-0098
Zolfi-Bavariani, M., Ronaghi, A., Ghasemi-Fasaei, R., & Yasrebi, J. (2016). Influence of poultry manure–derived biochars on nutrients bioavailability and chemical properties of a calcareous soil. Archives of Agronomy and Soil Science, 62, 1578-1591. https://doi.org/10.1080/03650340.2016.1151976