Ann, Y., Reddy, K., & Delfino, J. (1999). Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering 14, 157-167.
Arancon, N. Q., Edwards, C.A., Lee, S., & Byrne, R. (2006). Effects of humic acids from vermicomposts on plant growth. EuropeanJournal of Soil Biology, 42, S65-S69.
Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337, 1-18. https://doi.org/10.1007/s11104-.-0464-5
Cao, D., Lan, Y., Yang, X., Chen, W., Jiang, L., Wu, Z., Li, N., & Han, X. (2023). Phosphorus fractions in biochar-amended soil—chemical sequential fractionation, 31P NMR, and phosphatase activity. Archives of Agronomy and Soil Science, 69(2), 169-181. https://doi.org/10.1080/03650340.2021.1967327
Cassity-Duffey, K., Cabrera, M., Mowrer, J., & Kissel, D. (2015). Titration and spectroscopic measurements of poultry litter pH buffering capacity. Journal of Environmental Quality 44, 1283-1292. https://doi.org/10.2134/jeq2014.11.0463
Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal, 2014, 506356. https://doi.org/10.1155/2014/506356
Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research 46, 437-444. https://doi.org/10.1071/SR08036
Cui, H-J., Wang, M. K., Fu, M-L., & Ci, E. (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of Soils and Sediments, 11, 1135. https://doi.org/10.1007/s11368-011-0405-9
DeLuca, T. H., Gundale, M., MacKenzie, M. D., Gao, S., & Jones, D. (2024). Biochar effects on soil nutrient transformations. In Biochar for environmental management. Taylor & Francis.
Du, Z., Wang, Y., Huang, J., Lu, N., Liu, X., Lou, Y., & Zhang, Q. (2014). Consecutive biochar application alters soil enzyme activities in the winter wheat–growing season. Soil Science, 179, 75-83. https://doi.org/10.1097/SS.0000000000000050
Eduah, J. O., Nartey, E. K., Abekoe, M. K., Breuning-Madsen, H., & Andersen, M. N.(2019). Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma, 341, 10-17. https://doi.org/10.1016/j.geoderma.2019.01.016
Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance.
Bioresource Technology 114, 644-653.
https://doi.org/10.1016/j.biortech.2012.03.022
Farhangi-Abriz, S., Torabian, S., Qin, R., Noulas, C., Lu, Y., & Gao, S. (2021). Biochar effects on yield of cereal and legume crops using meta-analysis. Science of the Total Environment 775, 145869. https://doi.org/10.1016/j.scitotenv.2021.145869
Fei, Y-h., Chen, Y., Liu, C., & Xiao, T. (2019). Biochar addition enhances phenanthrene fixation in sediment. Bulletin of Environmental Contamination and Toxicology, 103, 163-168.
Feizi, M., Jalali, M., & Renella, G. (2017). Available alkalinity and N mineralization are key factors regulating soil pH value of an organically amended Iranian agricultural soil. Arid Land Research and Management, 31, 140-158. https://doi.or/10.1080/15324982.2016.1278055
Fleming, I., & Williams, D. H. (1966).
Spectroscopic methods in organic chemistry. Germany: Springer
Garg, S., & Bahl, G. S. (2008). Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresource Technology 99, 5773-5777. https://doi.org/10.1016/j.biortech.2007.10.063
Gee, G. W., & Or, D. (2002). Methods of soil analysis: Part 4 physical methods JACOB H. DANE and G. CLARKE TOPP (ed.) Soil Science Society of America, (pp. 255-293).Wiley.
Glaser, B., & Lehr, V-I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9, 9338. https://doi.org/10.1038/s41598-019-45693-z.
Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15. https://doi.org/10.1016/j.soilbio.2016.08.001
Hemati Matin, N., Jalali, M., Antoniadis, V., Shaheen, S. M., Wang, J., Zhang, T., Wang, H., & Rinklebe, J. (2020). Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 241, 124888. https://doi.org/10.1016/j.chemosphere.2019.124888
Hong, C., & Lu, S. (2018). Does biochar affect the availability and chemical fractionation of phosphate in soils? Environmental Science and Pollution Research, 25, 8725-8734. https://doi.org/10.1007/s11356-018-1219-8
Idbella, M., Baronti, S., Giagnoni, L., Renella, G., Becagli, M., Cardelli, R., Maienza, A., Vaccari, F. P., & Bonanomi, G. (2024). Long-term effects of biochar on soil chemistry, biochemistry, and microbiota: Results from a 10-year field vineyard experiment.
Applied Soil Ecology, 195, 105217.
https://doi.org/10.1016/j.apsoil.2023.105217
Jackson, M. L. (2005). Soil chemical analysis: Advanced course. UW-Madison Libraries: Parallel Press.
Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., & Shi, J. (2016). Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: Amicrocosm incubation study. Chemosphere, 142, 128-135.
Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus transformation in soils following co-application of charcoal and wood ash.
Agronomy,
11(10), 2010.
https://doi.org/10.3390/agronomy11102010
Krämer, S., & Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32, 179-188.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43, 1812-1836.
Li, F., Liang, X., Niyungeko, C., Sun, T., Liu, F., & Arai, Y. (2019). Chapter two - effects of biochar amendments on soil phosphorus transformation in agricultural soils. In: Sparks DL (ed). Advances in Agronomy. (pp 131-172), Academic Press.
Liang, Y., Cao, X., Zhao, L., Xu, X., & Harris, W. (2014). Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: Effects of phosphorus nature and soil property. Journal of Environmental Quality, 43, 1504-1509. https://doi.org/10.2134/jeq2014.01.0021
Liu, S., Meng, J., Jiang, L., Yang, X., Lan, Y., Cheng, X., & Chen, W. (2017). Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology, 116, 12-22. https://doi.org/10.1016/j.apsoil.2017.03.020
Liu, X. H., & Zhang, X. C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. International Journal of Agriculture & Biology, 14(5), 745-750.
Ma, Y. L., & Matsunaka, T. (2013). Biochar derived from dairy cattle carcasses as an alternative source of phosphorus and amendment for soil acidity. Soil Science and Plant Nutrition, 59, 628-641.
Manolikaki, I. I., Mangolis, A., & Diamadopoulos, E. (2016). The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.
Journal of Environmental Management, 181, 536-543.
https://doi.org/10.1016/j.jenvman.2016.07.012
Marinari, S., Masciandaro, G., Ceccanti, B., & Grego, S. (2000). Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72, 9-17.
McDowell, R., & Sharpley, A. (2003). Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma, 112, 143-154.
Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2017). Effects of live wetland plant macrophytes on acidification, redox potential and sulphate content in acid sulphate soils. Soil Use and Management, 33(3), 471-481. https://doi.org/10.1111/sum.12362
Morshedizad, M., Panten, K., Klysubun, W., & Leinweber, P. (2018). Bone char effects on soil: Sequential fractionations and XANES spectroscopy. Soil, 4(1), 23-35. https://doi.org/10.5194/soil-4-23-2018
Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M. C., & Marinari, S. (2012). Soil enzymology: Classical and molecular approaches. Biology and Fertility of Soils, 48, 743-762.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 961-1010.
Ölinger, R., Margesin, R.,& Kandeler, E. (1996). Enzymes involved in phosphorus metabolism. In: Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (eds). Methods in soil biology. (pp, 208-227), Springer Berlin Heidelberg, Berlin, Heidelberg.
Paludan, C., & Morris, J. T. (1999). Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45, 197-221.
Pierzynski, G. M. (2000). Methods of phosphorus analysis for soils, sediments, residuals, and waters. North Carolina State University.
Poach, M. E., & Faulkner, S. P. (1998). Soil phosphorus characteristics of created and natural wetlands in the Atchafalaya Delta, LA. Estuarine, Coastal and Shelf Science, 46, 195-203. https://doi.org/10.1006/ecss.1997.0252
Qian, T., Zhang, X., Hu, J., & Jiang, H. (2013). Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 93, 2069-2075. https://doi.org/10.1016/j.chemosphere.2013.07.041
Rafique, M. I., Usman, A. R., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2020). In situ immobilization of Cr and its availability to maize plants in tannery waste–contaminated soil: Effects of biochar feedstock and pyrolysis temperature. Journal of Soils and Sediments, 20, 330-339. https://doi.org/10.1007/s11368-019-02399-z
Rao, B. K. R., Bailey, J., & Wingwafi, R. W. (2011). Comparison of three digestion methods for total soil potassium estimation in soils of Papua New Guinea derived from varying parent materials. Communications in Soil Science and Plant Analysis, 42, 1259-1265. https://doi.org/10.1080/00103624.2011.571740
Rasoulpoor, K., Marjani, A. P., & Nozad, E. (2020). Competitive chemisorption and physisorption processes of a walnut shell based semi-IPN bio-composite adsorbent for lead ion removal from water: Equilibrium, Kinetic and Thermodynamic studies. Environmental Technology & Innovation, 20, 101133. https://doi.org/10.1016/j.eti.2020.101133
Ravindiran, G., Rajamanickam, S., Janardhan, G., Hayder, G., Alagumalai, A., Mahian, O., Lam, S. S., & Sonne, C. (2024). Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar, 6, 62. https://doi.org/10.1007/s42773-024-00350-1
Saleem, A., Irshad, M., Eneji, A. E., Hassan, A., Mahmood, Q., & Irshad, U. (2017). Fractionation of phosphorus in soils amended with poultry manure co-composted with sugarcane and cabbage wastes. Biosciences and Plant Biology, 33(5), 1230-1241
Schneider, F., & Haderlein, S. B. (2016). Potential effects of biochar on the availability of phosphorus — mechanistic insights. Geoderma, 277, 83-90. https://doi.org/10.1016/j.geoderma.2016.05.007
Sun, D., Hale, L., Kar, G., Soolanayakanahally, R., & Adl, S. (2018). Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere, 194, 682-691. https://doi.org/10.1016/j.chemosphere.2017.12.035
Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties.
Chemical Engineering Journal,
240,
574-578.
https://doi.org/10.1016/j.cej.2013.10.081
Sun, Z., Hu, Y., Shi, L., Li, G., Han, J., Pang, Z., Liu, S., Chen, Y., & Jia, B. (2022). Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant, Soil and Environment, 68, 272-289. https://doi.org/10.17221/522/2021-PSE
Tipson, R. S., & Cohen, A. (1968). Reaction of some sulfonic esters of D-mannitol with methoxide; synthesis of 2, 3: 4, 5-dianhydro-D-iditol. Carbohydrate Research, 7, 232-243.
Toor, G. S., Hunger, S., Peak, J. D., Sims, J. T., & Sparks, D. L. (2006). Advances in the characterization of phosphorus in organic wastes: Environmental and agronomic applications. Advances in Agronomy, 89, 1-72. https://doi.org/10.1016/S0065-2113(05)89001-7
Vakal, S. V., Yanovska, A. O., Vakal, V. S., Artyukhov, A. Y., Shkola, V. Y., Yarova, T. Y., Dmitrikov, V. P., Krmela, J., & Malovanyy, M. S. (2021). Minimization of soil pollution as a result of the use of encapsulated mineral fertilizers. Journal of Ecological Engineering, 22, 221-230. https://doi.org/10.12911/22998993/128965
Waldrip, H. M., He, Z., & Erich, M. S. (2011). Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47, 407-418.
Wang, L., O’Connor, D., Rinklebe, Jr., Ok, Y. S., Tsang, D. C., Shen, Z., & Hou, D. (2020). Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications. Environmental Science & Technology, 54, 14797-14814.
Xu, G., Sun, J., Shao, H., & Chang, S. X. (2014). Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering, 62, 54-60. https://doi.org/10.1016/j.ecoleng.2013.10.027
Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., & Wang, D. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, 537-544.
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8-21. https://doi.org/10.1016/j.jenvman.2018.10.117
Yuan, J-H., Xu, R-K., Wang, N., & Li, J-Y. (2011). Amendment of acid soils with crop residues and biochars. Pedosphere, 21, 302-308. https://doi.org/10.1016/S1002-0160(11)60130-6
Ziadi, N., Zhang, X., Gagnon, B., & Manirakiza, E. (2020). Soil phosphorus fractionation after co-applying biochar and paper mill biosolids. Canadian Journal of Soil Science, 102, 53-63. https://doi.org/10.1139/cjss-2020-0098
Zolfi-Bavariani, M., Ronaghi, A., Ghasemi-Fasaei, R., & Yasrebi, J. (2016). Influence of poultry manure–derived biochars on nutrients bioavailability and chemical properties of a calcareous soil. Archives of Agronomy and Soil Science, 62, 1578-1591. https://doi.org/10.1080/03650340.2016.1151976