Extraction and identification of Golder (Otostegia persica) root extract phytochemicals and evaluating their anticancer activity

Document Type : Research Paper

Authors

1 Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 Particle & Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

3 Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, I. R. Iran

Abstract

Otostegia persica (commonly known as Golder) is a medicinal plant traditionally used for remedial properties. The aerial parts of Golder have been investigated for their phytochemical composition and anticancer potential. This study aimed to extract and identify bioactive compounds from Golder roots to evaluate their anticancer activity against colon cancer cell lines using the thermal reflux method with hexane, chloroform, and methanol solvents. The Golder root and its extracts were analyzed to identify bioactive compounds using various techniques, including energy-dispersive X-ray (EDX) analysis, Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and gas chromatography/mass spectrometry (GC/MS). The results showed that the hexane extract had the lowest extraction efficiency due to its non-polar nature. Also, compared to the methanol extract, the chloroform extract contained fewer carbohydrates which helped to identify other bioactive compounds. The chloroform extraction yielded several compounds with potential anticancer activity. These compounds were squalene, naphthalene derivatives, 1H-indole-2-carboxylic acid, vanillin, benzyl alcohol, and cicillin. The in vitro anticancer activity was evaluated using the MTT assay (3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay) on HCT116, SW480, SW48, and SW742 cell lines. The inhibition of cell proliferation was significantly dose-dependent, with IC50 values of 394.9, 563.3, 721.7, and 565.1 μg/mL, respectively. This study provides new insights into the potential use of Golder root extracts as anticancer agents since the chloroform extract induced morphological changes in cancer cells, thus reducing their viability by approximately 50% when the extract was used at 400 μg/mL.

Keywords

Main Subjects


Article Title [Persian]

استخراج و شناسایی فیتوکمیکال‌های عصاره ریشه گلدر (Otostegia persica) و ارزیابی فعالیت ضدسرطانی آن‌ها

Authors [Persian]

  • زهرا فرقانی 1
  • سید محمد هاشم حسینی 1
  • پائول ون در میرن 2
  • فخر الدین نقیبب الحسینی 3
  • مهرداد نیاکوثری 1
1 بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
2 گروه فناوری ذرات و سطحی، گروه شیمی و فناوری سبز، دانشکده مهندسی علوم زیستی، دانشگاه گنت، بلژیک
3 گروه بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

گلدر (Otostegia persica) به طور سنتی برای خواص دارویی آن استفاده می شود. قسمت‌های هوایی گلدر از نظر ترکیب فیتوشیمیایی و پتانسیل ضدسرطانی مورد بررسی قرار گرفته است. این مطالعه با هدف استخراج و شناسایی ترکیبات زیست‌فعال از ریشه گلدر با استفاده از هگزان، کلروفرم و متانول به روش رفلاکس حرارتی و ارزیابی فعالیت ضدسرطانی آن‌ها در برابر رده‌های سلولی سرطان روده بزرگ انجام شد. ریشه گلدر و عصاره‌های آن با استفاده از طیف سنجی پراکندگی انرژی پرتو ایکس (EDX)، طیف‌سنجی مادون قرمز- تبدیل فوریه (FT-IR) تکنیک‌های طیف‌سنجی رزونانس مغناطیسی هسته‌ای (NMR)، طیف‌سنجی مرئی-فرابنفش (UV-Vis) و کروماتوگرافی گازی-طیف‌سنجی جرمی (GC/MS) تجزیه و تحلیل شدند. نتایج نشان داد که عصاره کلروفرمی حاوی کربوهیدرات کمتری در مقایسه با عصاره متانولی است که به شناسایی سایر ترکیبات زیست‌فعال کمک می کند. عصاره هگزانی به دلیل ماهیت غیرقطبی خود کمترین راندمان استخراج را داشت. استخراج کلروفرم چندین ترکیب با فعالیت ضدسرطانی بالقوه، از جمله اسکوالن، مشتقات نفتالین، 1H-ایندول-2-کربوکسیلیک اسید، وانیلین، بنزیل الکل و سیسیلین را به همراه داشت. فعالیت ضدسرطانی در شرایط آزمایشگاهی با استفاده از آزمون سمیت سلولی (MTT) بر روی رده‌های سلولی HCT116 ، SW480، SW48 و SW742 مورد ارزیابی قرار گرفت. نتایج، مهار تکثیر سلولی وابسته به دوز قابل توجهی را با مقادیر IC50 به ترتیب 394.9، 563.3، 721.7 و 565.1 میکروگرم بر میلی لیتر نشان دادند. این مطالعه بینش جدیدی در مورد استفاده از عصاره‌های ریشه گلدر به عنوان عوامل ضدسرطانی ارائه می دهد، زیرا عصاره کلروفرم باعث ایجاد تغییرات مورفولوژیکی در سلول‌های سرطانی می شود و زنده ماندن را حدود 50٪ در غلظت 400 میکروگرم در میلی لیتر کاهش می دهد.

Keywords [Persian]

  • روش رفلاکس حرارتی
  • ریشه گلدر
  • سرطان روده بزرگ
  • فعالیت ضد سرطانی
Aati, H. Y., Attia, H., Babtin, R., Al-Qahtani, N., & Wanner, J. (2023). Headspace solid phase micro-extraction of volatile constituents produced from saudi ruta chalepensis and molecular docking study of potential antioxidant activity. Molecules, 28(4), 1891. https://doi.org/10.3390/molecules28041891
Afolabi, O. A., Akhigbe, T. M., Akhigbe, R. E., Alabi, B. A., Gbolagun, O. T., Taiwo, M. E., Fakeye, O., & Yusuf, E. O. (2022). Methanolic Moringa oleifera leaf extract protects against epithelial barrier damage and enteric bacterial translocation in intestinal I/R: Possible role of caspase 3. Frontiers in Pharmacology, 13, 989023. https://doi.org/10.3389/fphar.2022.989023
Alaklabi, A., Arif, A., Ahamed, A., Manilal, A., Surendrakumar, R., & Idhayadhulla, A. (2016). Larvicidal, nematicidal, antifeedant and antifungal, antioxidant activities of Mentha spicata (Lamiaceae) root extracts. Tropical Journal of Pharmaceutical Research, 15(11), 2383-2390. https://doi.org/10.4314/tjpr.v15i11.12
Asghari, G., Nourallahi, H., Havaie, S., & Issa, L. (2007). Antimicrobial activity of Otostegia persica Boiss. extracts. Research in Pharmaceutical Sciences, 1(1), 53-58.
Bagherzade, G., Dourandishan, M., & Malekaneh, M. (2014). Antidiabetic effects of otostegia persica root in alloxan-induced diabetic rats. Pure and Applied Chemical Sciences, 2, 1-9. https://doi.org/10.12988/pacs.2014.31122
Barragan Ferrer, D., Venskutonis, P. R., Talou, T., Zebib, B., J. M., & Merah, O. (2016). Potential interest of tussilago farfara (L.) whole plant of Lithuanian and French origin for essential oil extraction. American Journal of Essential Oils and Natural Products, 4(3), 12-15.
Bett, P. K., Deng, A. L., Ogendo, J. O., Kariuki, S. T., Kamatenesi-Mugisha, M., Mihale, J. M., & Torto, B. (2016). Chemical composition of Cupressus lusitanica and Eucalyptus saligna leaf essential oils and bioactivity against major insect pests of stored food grains. Industrial Crops and Products, 82, 51-62. https://doi.org/10.1016/j.indcrop.2015.12.009
Caboni, P., Ntalli, N. G., Aissani, N., Cavoski, I., & Angioni, A. (2012). Nematicidal activity of (E,E)-2, 4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. Journal of Agricultural and Food Chemistry, 60(4), 1146-1151. https://doi.org/10.1021/jf2044586.
Casu, L., Solinas, M. N., Saba, A. R., Cottiglia, F., Caboni, P., Floris, C., Laconi, S., Pompei, R., & Leonti, M. (2010). Benzophenones from the roots of the Popoluca Amerindian medicinal plant Securidaca diversifolia (L.) SF Blake. Phytochemistry Letters, 3(4),226-229. https://doi.org/10.1016/j.phytol.2010.08.005.
Colaric, M., Veberic, R., Solar, A., Hudina, M., & Stampar, F. (2005). Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. Journal of Agricultural and Food Chemistry, 53(16), 6390-6396. https://doi.org/10.1021/jf050721n.
Conceição, J. N., Marangoni, B. S., Michels, F. S., Oliveira, I. P., Passos, W. E., Trindade, M. A. G., & Caires, A. R. L. (2019). Evaluation of molecular spectroscopy for predicting oxidative degradation of biodiesel and vegetable oil: Correlation analysis between acid value and UV–Vis absorbance and fluorescence. Fuel Processing Technology, 183, 1-7. https://doi.org/10.1016/j.fuproc.2018.10.022
Das, B., & Banerji, J. (1988). Arylnaphthalene lignan from Jatropha gossypifolia. Phytochemistry, 27(11), 3684-3686. https://doi.org/10.1016/0031-9422(88)80799-4
Demirtas, I., Gecibesler, I. H., & Yaglioglu, A. S. (2013). Antiproliferative activities of isolated flavone glycosides and fatty acids from Stachys byzantina. Phytochemistry Letters, 6(2), 209-214. https://doi.org/10.1016/j.phytol.2013.02.001.
Deng, X. H., Song, H. Y., Zhou, Y. F., Yuan, G. Y., & Zheng, F. J. (2013). Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro. Experimental and Therapeutic Medicine, 6(5), 1155-1158. https://doi.org/10.3892/etm.2013.1285.
Ekeocha, P., Ezeh, C., Anyam, J., Onyekwelu, K., Ikekpeazu, J., & Igoli, J. (2021). Isolation, Structural Elucidation and Therapeutic Potentials of Root of Cucurbita pepo. Indian Journal of Pharmaceutical Sciences, 83(6), 1288-1294.https://doi.org/10.36468/pharmaceutical-sciences.884
Okereke, S., Ikpeazu, O., Nwaogwugwu, C., Ezekwe, A., Nosiri, C., Ukogu, P., Osita, D., &  Emmanuel, A.    (2021). GC-MS analysis of spondias mombin (Linn) methanol leaf extract. International Journal of Biochemistry Research & Review, 30(1), 1-7. https://doi.org/10.9734/ijbcrr/2021/v30i130240
Golmakani, M. T., & Rezaei, K. (2008). Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L. Food Chemistry, 109(4), 925-930.
Goren, A. C., Bilsel, G., Altun, M., Satil, F., & Dirmenci, T. (2003). Fatty acid composition of seeds of Satureja thymbra and S. cuneifolia. Z Naturforsch C. Journal of Biosciences, 58(7-8), 502-504. https://doi.org/10.1515/znc-2003-7-810
Guillén, M. D., & Manzanos, M. J. (1999). Extractable components of the aerial parts of Salvia lavandulifolia and composition of the liquid smoke flavoring obtained from them. Journal of Agricultural and Food Chemistry, 47(8), 3016-3027. https://doi.org/10.1021/jf981260r.
Hameed, I. H., Ibraheam, I. A., & Kadhim, H. J. (2015). Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves. Journal of Pharmacognosy and Phytotherapy, 7(6), 90-106. https://doi.org/10.5897/JPP2015.0348.
Hazrati, S., Lotfi, K., Govahi, M., & Ebadi, M. T. (2021). A comparative study: Influence of various drying methods on essential oil components and biological properties of Stachys lavandulifolia. Food Science & Nutrition, 9(5), 2612-2619. https://doi.org/10.1002/fsn3.2218.
Hossain, M. A., Shah, M. D., & Sakari, M. (2011). Gas chromatography–mass spectrometry analysis of various organic extracts of Merremia borneensis from Sabah. Asian Pacific Journal of Tropical Medicine, 4(8), 637-641. https://doi.org/10.1016/S1995-7645(11)60162-4
Hossain, S., Jalil, M. A., Islam, T., & Rahman, M. M. (2022). A low-density cellulose rich new natural fiber extracted from the bark of jack tree branches and its characterizations. Heliyon, 8(11), e11667. https://doi.org/10.1016/j.heliyon.2022.e11667
Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., & Shao, H. (2021). Phthalic acid esters: Natural sources and biological activities. Toxins (Basel), 13(7), 495. https://doi.org/10.3390/toxins13070495
Indran, S., & Raj, R. E. (2015). Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers, 117, 392-399. https://doi.org/10.1016/j.carbpol.2014.09.072
Iqbal, A., Qureshi, N. A., Alhewairini, S. S., Shaheen, N., Hamid, A., & Qureshi, M. Z. (2022). Biocidal action, characterization, and molecular docking of Mentha piperita (Lamiaceae) leaves extract against Culex quinquefasciatus (Diptera: Culicidae) larvae. PLoS One, 17(7), e0270219. https://doi.org/10.1371/journal.pone.0270219
Judzentiene, A., Stoncius, A., & Budiene, J. (2015). Chemical composition of the essential oils from Glechoma hederacea plants grown under controlled environmental conditions in Lithuania. Journal of Essential Oil Research, 27(5), 454-458. https://doi.org/10.1080/10412905.2015.1039663
Kagawa, N., Iguchi, H., Henzan, M., & Hanaoka, M. (2019). Drying the leaves of Perilla frutescens increases their content of anticancer nutraceuticals. Food Science & Nutrition, 7(4), 1494-1501. https://doi.org/10.1002/fsn3.993
Kilinç, B. Ö., Gödelek, D., Süfer, Ö., Saygideğer Demir, B., Sezan, A., Saygideğer, Y., & Bozok, F. (2022). Essential oils from some Lamiaceae plants: Antioxidant and anticancer potentials besides thermal properties. Chemistry & Biodiversity, 19(10), e202200418. https://doi.org/10.1002/cbdv.202200418
Kumar Sahu, P., Chakradhari, S., Martín Ramos, P., Patel, K. S., Towett, E. K., & Martín Gil, J. (2019). Nutritional, spectral and thermal characteristics of Lamiaceae seeds. European Journal of Medicinal Plants, 28(3), 1-13. https://doi.org/10.9734/ejmp/2019/v28i330133
Leong, Y. W., Kang, C. C., Harrison, L. J., & Powell, A. D. (1997). Phenanthrenes, dihydrophenanthrenes and bibenzyls from the orchid Bulbophyllum vaginatum. Phytochemistry, 44(1), 157-165. https://doi.org/10.1016/S0031-9422(96)00387-1
Lin, C. H., Chao, L. K., Lin, L. Y., Wu, C. S., Chu, L. P., Huang, C. H., & Chen, H. C. (2022). Analysis of volatile compounds from different parts of houttuynia cordata Thunb. Molecules, 27(24), 8893. https://doi.org/10.3390/molecules27248893
Lin, H. C., Kuo, Y. L., Lee, W. J., Yap, H. Y., & Wang, S. H. (2016). Antidermatophytic Activity of ethanolic extract from croton tiglium. BioMed Research International, 2016, 3237586. https://doi.org/10.1155/2016/3237586
Lucas, K. A., Filley, J. R., Erb, J. M., Graybill, E. R., & Hawes, J. W. (2007). Peroxisomal metabolism of propionic acid and isobutyric acid in plants. Journal of Biological Chemistry, 282(34), 24980-24989. https://doi.org/10.1074/jbc.M701028200
Mamadalieva, N. Z., Sharopov, F., Satyal, P., Azimova, S. S., & Wink, M. (2017). Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities. Natural Product Research, 31(10), 1172-1176. https://doi.org/0.1080/14786419.2016.1222383.
Manandhar, S., Luitel, S., & Dahal, R. K. (2019). In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. Journal of Tropical Medicine, 2019(Special 1), 1895340. https://doi.org/10.1155/2019/1895340
Mathur, M., & Kamal, R. (2012). Studies on trigonelline from Moringa oleifera and its in vitro regulation by feeding precursor in cell cultures. Revista Brasileira de Farmacognosia, 22, 994-1001. https://doi.org/10.1590/S0102-695X2012005000041
Mekni, M., Kharroubi, W., Flamimi, G., Garrab, M., Mastouri, M., & Hammami, M. (2018). Comparative study between extracts of different pomegranate parts issued from five tunisian cultivars (Punica granatum L.): Phytochemical content, volatile composition and biological activity. International Journal of Current Microbiology and Applied Sciences, 7(5), 1663-1682. https://doi.org/10.20546/ijcmas.2018.705.197
Miyazawa, M., Yoshinaga, S., Kashima, Y., Nakahashi, H., Hara, N., Nakagawa, H., & Usami, A. (2016). Chemical composition and characteristic odor compounds in essential oil from alismatis rhizoma (Tubers of Alisma orientale). Journal of Oleo Science, 65(1), 91-97. https://doi.org/10.5650/jos.ess15176
Moradnia, F., Taghavi Fardood, S., & Ramazani, A. (2023). Green synthesis and characterization of NiFe2O4@ZnMn2O4 magnetic nanocomposites: An efficient and reusable spinel nanocatalyst for the synthesis of tetrahydropyrimidine and polyhydroquinoline derivatives under microwave irradiation. Applied Organometallic Chemistry, 38(3), e7315. https://doi.org/10.1002/aoc.7315
Morteza-Semnani, K., Saeedi, M., Changizi, S., & Vosoughi, M. (2005). Essential oil composition of Salvia virgata Jacq. from Iran. Journal of Essential Oil Bearing Plants, 8(3), 330-333. https://doi.org/10.1080/0972060X.2005.10643461
Moshari-Nasirkandi, A., Alirezalu, A., Alipour, H., & Amato, J. (2023). Screening of 20 species from Lamiaceae family based on phytochemical analysis, antioxidant activity and HPLC profiling. Scientific Reports, 13(1), 16987. https://doi.org/10.1038/s41598-023-44337-7
Ndontsa, B. L., Tala, M. F., Talontsi, F. M., Wabo, H. K., Tene, M., Laatsch, H., & Tane, P. (2012). New cytotoxic alkylbenzoquinone derivatives from leaves and stem of Ardisia kivuensis (Myrsinaceae). Phytochemistry Letters, 5(3), 463-466. https://doi.org/10.1177/1934578X1601100527
Nikolić, M., Jovanović, K. K., Marković, T., Marković, D., Gligorijević, N., Radulović, S., & Soković, M. (2014). Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Industrial Crops and Products, 61, 225-232. https://doi.org/10.1016/j.indcrop.2014.07.011.
Ohashi, M., Tan, D., Lu, J., Jamieson, C. S., Kanayama, D., Zhou, J., Houk, K & Tang, Y. (2023). Enzymatic cis-decalin formation in natural product biosynthesis. Journal of the American Chemical Society, 145(6), 3301-3305. https://doi.org/10.1021/jacs.2c12854
Pande, K. K., Pande, L., Pande, B., Pujari, A., & Sah, P. (2010). Gas chromatographic investigation of Coriandrum sativum L. from Indian Himalayas. New York Science Journal, 3(6), 43-47.
Peng, Y., Bishop, K. S., & Quek, S. Y. (2019). Compositional analysis and aroma evaluation of feijoa essential oils from New Zealand Grown Cultivars. Molecules, 24(11), 2053. https://doi.org/10.3390/molecules24112053
Pramila, D., Xavier, R., Marimuthu, K., Kathiresan, S., Khoo, M., Senthilkumar, M., Sathya, K., & Sreeramanan, S. (2012). Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). Journal of Medicinal Plants Research, 6(2), 331-335.
https://doi.org/10.5897/JMPR11.1232
Pratiwi, R. A., & Nandiyanto, A. B. D. (2022). How to read and interpret UV-VIS spectrophotometric results in determining the structure of chemical compounds. Indonesian Journal of Educational Research and Technology, 2(1), 1-20. https://doi.org/10.1750 9/ijert.v2i1.35171
Praveena, A., Ramkumar, G., & Sanjayan, K. (2012). Phytochemical screening of the extract of the root-bark of Morinda tinctoria (Rubiaceae) for secondary metabolites. Research Journal of Pharmacy and Technology, 5(1), 83-87. https://doi.org/10.5958/0974-360X
Pribluda, A., de la Cruz, C. C., & Jackson, E. L. (2015). Intratumoral heterogeneity: from diversity comes resistance. Clinical Cancer Research, 21(13), 2916-2923. https://doi.org/10.1158/1078-0432.CCR-14-1213
Proietto, M., Crippa, M., Damiani, C., Pasquale, V., Sacco, E., Vanoni, M., & Gilardi, M. (2023). Tumor heterogeneity: Preclinical models, emerging technologies, and future applications. Frontiers in Oncology, 13, 1164535. https://doi.org/10.3389/fonc.2023.1164535
Roopa, M., Shubharani, R., Rhetso, T., & Sivaram, V. (2020). Comparative analysis of phytochemical constituents, free radical scavenging activity and GC-MS analysis of leaf and flower extract of Tithonia diversifolia (Hemsl.) A. Gray. Gray. International Journal of Pharmaceutical Sciences, 11, 5081-5090. https://doi.org/10.13040/IJPSR.0975-8232.11(10).5081-90
Rosselli, S., Fontana, G., & Bruno, M. (2019). A rteview of the phytochemistry, traditional uses, and biological activities of the genus ballota and otostegia. Planta Medica, 85(11-12), 869-910. https://doi.org/10.1055/a-0953-6165
Sadeghi, Z., Akaberi, M., & Valizadeh, J. (2014). Otostegia persica (Lamiaceae): A review on its ethnopharmacology, phytochemistry, and pharmacology. Avicenna Journal of Phytomedicine, 4(2), 79-88.
Saeidian, H., Mirjafary, Z., Abdolmaleki, E., & Moradnia, F. (2013). An expedient process for the synthesis of 2-(N-arylamino) benzaldehydes from 2-hydroxybenzaldehydes via Smiles rearrangement. Synlett, 24(16), 2127-2131. https://doi.org/10.1002/chin.201409065
Sahu, P. K., Chakradhari, S., Sipeniece, E., Mišina, I., Qian, Y., Grygier, A., Rudzińska, M., Patel, K., & Górnaś, P. (2020). Fatty acids, tocopherols, tocotrienols, phytosterols, carotenoids, and squalene in seed oils of hyptis suaveolens, Leonotis nepetifolia, and Ocimum sanctum. European Journal of Lipid Science and Technology, 122(7), 2000053. https://doi.org/10.1002/ejlt.202000053
Saini, R., Jaitak, V., Guleria, S., Kaul, V. K., Kiran Babu, G., Singh, B., Lal, B., & Singh, R. (2012). Comparison of headspace analysis of volatile constituents with GCMS analysis of hydrodistilled and supercritical fluid extracted oil of Capillipedium parviflorum. Journal of Essential Oil Research, 24(3), 315-320. https://doi.org/10.1080/10412905.2012.677141
Salehi, B., Ata, A., Kumar, N., Sharopov, F., Ramirez-Alarcon, K., Ruiz-Ortega, A., Ayatollahi, A., Tsouh Fokou, P., Kobarfard, F., Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., Ostrander, E.,  & Sharifi-Rad, J. (2019). Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551
Savitskaya, T., & Grinshpan, D. (2021). Antimicrobial and antioxidant activities of Cinnamomum cassiaessential oil and itsapplication in food preservation. Open Chemistry, 19(1), 214-227. https://doi.org/10.1515/chem-2021-0191
Seki, Y., Sarikanat, M., Sever, K., & Durmuşkahya, C. (2013). Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering, 44(1), 517-523. https://doi.org/10.1016/j.compositesb.2012.03.013
Serrano, C. A., Villena, G. K., Rodriguez, E. F., Calsino, B., Ludena, M. A., & Ccana-Ccapatinta, G. V. (2023). Phytochemical analysis for ten Peruvian Mentheae (Lamiaceae) by liquid chromatography associated with high resolution mass spectrometry. Scientific Reports, 13(1), 10714. https://doi.org/10.1038/s41598-023-37830-6
Shah, S., Amin, M., Gul, B., & Begum, M. (2020). Ethnoecological, elemental, and phytochemical evaluation of five plant species of lamiaceae in Peshawar, Pakistan. Scientifica, 2020, 1-7. https://doi.org/10.1155/2020/2982934
Sharififar, F., Mozaffarian, V., & Moradkhani, S. (2007). Comparison of antioxidant and free radical scavenging activities of the essential oils from flowers and fruits of Otostegia persica Boiss. Pakistan Journal of Biological Sciences, 10(21), 3895-3899. https://doi.org/10.3923/pjbs.2007.3895.3899
Simonian, M. H. (2002). Spectrophotometric determination of protein concentration. Current Protocols in Cell Biology, 15(1), A. 3B. 1-A. 3B. 7.
Siswadi, S., & Saragih, G. S. (2021). Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R. Br. AIP Conference Proceedings, 2353(1), 030098. https://doi.org/10.1063/5.0053057
Sivanesan, I., Saini, R., Noorzai, R., Zamany, A., & Kim, D. (2016). In vitro propagation, carotenoid, fatty acid and tocopherol content of Ajuga multiflora. Biotech, 6(91), 4-10. https://doi.org/10.1007/s13205-016-0376-z
Son, N. T. (2019). Secondar metabolites of genus pandanus: An aspect of phytochemistry. Mini-Reviews in Organic Chemistry, 16(7), 689-710. https://doi.org/10.2174/1570193X16666181206102740
Stuart, B. H. (2004). Infrared spectroscopy: Fundamentals and applications. USA: John Wiley & Sons.
Süntar, I. (2019). Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochemistry Reviews, 19(5), 1199-1209. https://doi.org/10.1007/s11101-019-09629-9.
Süntar, I., Nabavi, S. M., Barreca, D., Fischer, N., & Efferth, T. (2018). Pharmacological and chemical features of Nepeta L. genus: Its importance as a therapeutic agent. Phytotherapy Research, 32(2), 185-198. https://doi.org/10.1002/ptr.5946
Talavera‐Bianchi, M., Adhikari, K., Chambers IV, E., Carey, E. E., & Chambers, D. H. (2010). Relation between developmental stage, sensory properties, and volatile content of organically and conventionally grown pac choi (Brassica rapa var. Mei Qing Choi). Journal of Food Science, 75(4), S173-S181. https://doi.org/10.1111/j.1750-3841.2010.01585.x
Tao, S., Yun, S., Yinxue, M., Xin, Y., & Kunming, Q. (2021). Chemical composition and antibacterial activity of the essential oil isolated from Flos Lonicerae (Flower Buds of Lonicera macranthoides Hand.-Mazz.). Natural Product Communications, 16(4), 1934578X211008318. https://doi.org/10.1177/1934578X211008318
Thomas, P. A., Stone, D., & La Porta, N. (2018). Biological flora of the British Isles: Ulmus glabra. Journal of Ecology, 106(4), 1724-1766. https://doi.org/10.1111/1365-2745.12994
Tian-Shung, W., Chung-Ren, S., & Ping-Chung, K. (2005). Chemical constituents and pharmacology of Aristolochi species. Studies in natural products chemistry, 32, 855-1018. https://doi.org/10.1016/S1572-5995(05)80071-7
Toori, M. A., Joodi, B., Sadeghi, H., Sadeghi, H., Jafari, M., Talebianpoor, M. S., Mehraban, F., Mostafazadeh, M., & Ghavamizadeh, M. (2015). Hepatoprotective activity of aerial parts of Otostegia persica against carbon tetrachloride-induced liver damage in rats. Avicenna Journal of Phytomedicine, 5(3), 238. https://doi.org/10.22038/ajp.2015.4137
Tsai, W. J., Chen, Y. C., Wu, M. H., Lin, L. C., Chuang, K. A., Chang, S. C., & Kuo, Y. C. (2008). Seselin from Plumbago zeylanica inhibits phytohemagglutinin (PHA)-stimulated cell proliferation in human peripheral blood mononuclear cells. Journal of Ethnopharmacology, 119(1), 67-73. https://doi.org/10.1016/j.jep.2008.05.032
Tshilanda, D. D., Mpiana, P. T., Onyamboko, D. N., Mbala, B. M., Ngbolua, K. T., Tshibangu, D. S., & Kasonga, T. K. (2014). Antisickling activity of butyl stearate isolated from Ocimum basilicum (Lamiaceae). Asian Pacific Journal of Tropical Biomedicine, 4(5), 393-398. https://doi.org/10.12980/APJTB.4.2014C1329
Tucker, A. O., Maciarello, M. J., Adams, R. P., Landrum, L. R., & Zanoni, T. A. (1991). Volatile leaf oils of Caribbean Myrtaceae. I. Three varieties of Pimenta racemosa (Miller) J. Moore of the Dominican Republic and the commercial bay oil. Journal of Essential Oil Research, 3(5), 323-329. https://doi.org/10.1080/10412905.1991.9697952
Uritu, C. M., Mihai, C. T., Stanciu, G. D., Dodi, G., Alexa-Stratulat, T., Luca, A., Leon-Constantin, M., Stefanescu, R., Bild, V., Melnic, S.,  & Tamba, B. I. (2018). Medicinal plants of the family lamiaceae in pain therapy: A review. Pain Research and Management, 8(2018), 7801543. https://doi.org/10.1155/2018/7801543.
Wang, J. Q., Yin, J. Y., Nie, S.-P., & Xie, M. Y. (2021). A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Research International, 143, 110290. https://doi.org/10.1016/j.foodres.2021.110290
Wang, J. H., Luan, F., He, X. D., Wang, Y., & Li, M. X. (2018). Traditional uses and pharmacological properties of Clerodendrum phytochemicals. Journal of Traditional and Complementary Medicine, 8(1), 24-38. https://doi.org/10.1016/j.jtcme.2017.04.001
Xia, Y., Zhang, F., Wang, W., & Guo, Y. (2015). Analysis of volatile compounds from Siraitia grosvenorii by headspace solid-phase microextraction and gas chromatography-quadrupole time-of-flight mass spectrometry. Journal of Chromatographic Science, 53(1), 1-7. https://doi.org/10.1093/chromsci/bmu012
Yuan, Y., Song, L., Li, M., Liu, G., Chu, Y., Ma, L., Zhou, Y., Wang, X., Gao, Qin, S., Yu, J., wang, X.,  & Huang, L. (2012). Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics, 13(1), 195. https://doi.org/10.1186/1471-2164-13-195
Zhang, Y., Yao, X., Bao, B., & Zhang, Y. (2006). Anti-fatigue activity of a triterpenoid-rich extract from Chinese bamboo shavings (Caulis bamfusae in taeniam). Phytotherapy Research, 20(10), 872-876. https://doi.org/10.1002/ptr.1965
Zhao, T., Tang, H., Xie, L., Zheng, Y., Ma, Z., Sun, Q., & Li, X. (2019a). Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology, 71(9), 1353-1369. https://doi.org/10.1111/jphp.13129
Zhao, T., Tang, H., Xie, L., Zheng, Y., Ma, Z., Sun, Q., & Li, X. (2019b). Scutellaria baicalensis Georgi.(Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology, 71(9), 1353-1369.http:// doi.org/10.1111/jphp.13129
Zlatanov, M., & Antova, G. (2004). Composition of biologically active lipids of Lamiaceae seed oils. Grasas y Aceites, 55(2), 143-147. https://doi.org/10.3989/gya.2004.v55.i2.159