Investigating the impact of climate change on the phenology stages of autumn wheat in Mazandaran province, Iran

Document Type : Research Paper

Authors

Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran.

Abstract

Anthropogenic climate change can affect crop phenological stages. This study aims to investigate the impacts of climate change on climatic parameters and wheat phenology stages in Mazandaran province in the north of Iran. For this purpose, the CanESM5 model in three Shared Socioeconomic Pathway scenarios (SSP126, SSP245, and SSP585) was analyzed in three periods (2025-2049, 2050-2074, and 2075-2100). In order to evaluate the downscaling model, some indicators such as root mean square error, mean bias error, correlation coefficient, and Nash-Sutcliffe were employed. Also, to investigate the effect of climate change on wheat phenological stages, the growing degree days of each phenological stage were used. The findings indicated a temperature increase of 1.5 to 5 °C across minimum, maximum, and mean temperatures. Growing degree days variation results showed that the highest annual growing degree days is in the third period (i.e., 2075-2100), with an increase of 68.5% compared to the base period (1986-2020) under scenario SSP585. Based on the findings, it is projected that climate change will lead to a decrease in growth period length of autumn wheat. This reduction could range from 40 to 70 days, affecting all phenological stages of autumn wheat except for the waxy ripe and maturity stages. As a result of the shortened growth period length, the waxy ripe and maturity stages will occur in colder weather conditions, thereby prolonging the final phenological stages of autumn wheat. Considering the uncertainty of climate models, examining several General Circulation Models can help to express more accurate opinion on growth period length of wheat in the future. 

Keywords

Main Subjects


Article Title [Persian]

بررسی تاثیر تغییر اقلیم بر مراحل فنولوژی گندم پاییزه در استان مازندران، ایران.

Authors [Persian]

  • مهدی نادی
  • بهاره شامگانی مشهدی
گروه مهندسی اب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ج. ا. ایران.
Abstract [Persian]

تغییرات آب و هوایی انسانی ساخت می تواند بر عملکرد محصول و مراحل فنولوژی گیاهان زراعی تأثیر بگذارد. این مطالعه با هدف بررسی اثرات تغییر اقلیم بر پارامترهای اقلیمی و مراحل فنولوژی گندم در استان مازندران انجام شد. برای این منظور، مدل CanESM5 در سه سناریو SSP126 ،SSP245، SSP585 در سه دوره 2025-2049، 2050-2074، 2075-2100 مورد تجزیه و تحلیل قرار گرفت. به منظور ارزیابی مدل ریزمقیاس سازی SDSM از شاخص‌های RMSE، MBE ،R و NS استفاده شد. برای بررسی تأثیر تغییر اقلیم بر مراحل فنولوژی گندم از درجه روز رشد (GDD) هر یک از مراحل فنولوژیکی استفاده شد. یافته ها حاکی از افزایش دمای 1/5 تا 5 درجه سلسیوس در دماهای حداقل، حداکثر و میانگین بود. نتایج تغییرات GDD نشان داد که بالاترین GDD سالانه در دوره سوم (یعنی 2075-2100) با افزایش 68/5 درصدی نسبت به دوره پایه (1986-2020) تحت سناریوی SSP585 است. بر اساس یافته ها، پیش بینی می شود که تغییرات آب و هوایی منجر به کاهش طول دوره رشد (GPL) گندم پاییزه شود. این کاهش می تواند از 40 تا 70 روز متغیر باشد و بر تمام مراحل فنولوژی گندم پاییزه به جز مراحل مومی رسیده و بلوغ تأثیر بگذارد. در نتیجه، مراحل رسیدن و بلوغ مومی شکل در شرایط آب و هوایی سردتر رخ می دهد و در نتیجه مراحل فنولوژی نهایی گندم پاییزه را طولانی می کند. با توجه به عدم قطعیت مدل‌های اقلیمی، بررسی چندین GCM می‌تواند به بیان نظر دقیق‌تر در مورد GPL گندم در آینده کمک کند.

Keywords [Persian]

  • درجه روز رشد
  • ریزمقیاس نمایی
  • سناریوهای اقلیمی
Aadrita, M. M., & Jahan, N. (2021). Projection of precipitation and temperature extremes over Bangladesh from CMIP6 SSP-RCP scenarios. New Orleans, USA: AGU Fall Meeting.
Ababaei, B., Sohrabi, T., Mirzaei, F., Rezaverdinejad, V., & Karimi, B. (2010). Climate change impact on wheat yield and analysis of the related risks:(Case study: Esfahan Ruddasht Region). Water and Soil Science (Agricultural Science), 20.1(3),135-150. (In Persian).
Abendroth, L. J., Miguez, F. E., Castellano, M. J., Carter, P. R., Messina, C. D., Dixon, P. M., & Hatfield, J. L. (2021). Lengthening of maize maturity time is not a widespread climate change adaptation strategy in the US Midwest. Global Change Biology, 27(11), 2426-2440.‏ https://doi.org/10.1111/gcb.15565.
Abshenas, A., Kamkar, B., Soltani, A., & Kazemi, H. (2022). Predicting the effects of climate change on physiological parameters determining wheat yield in 2050 (case study: Golestan province, Iran). Environ Monit Assess, 194(10), 734. https://doi.org/10.1007/s10661-022-10428-7.
Ahmad, S., Abbas, Q., Abbas, G., Fatima, Z., Rehman, A., Naz, S., Younis, Jahanzeb Khan, R., Wajid, N., Rehman, M. H, Ahmad, A., Rasul, Gh., Khan, M. A., & Hasanuzzaman, M. (2017). Quantification of climate warming and crop management impacts on cotton phenology. Plants, 6(1),7.‏
Ahmed, M. )2015(. Response of spring wheat (Triticum aestivum L.) quality traits and yield to sowing date. PloS one, 10(4), p.e0126097.
Alotaibi, M. (2023). Climate change, its impact on crop production, challenges, and possible solutions. Notulae Botanicae Horti AgrobotaniciCluj-Napoca, 51(1), 13020-13020.‏ https://doi.org/10.15835/nbha51113020.
Asgari, A., Darzi-Naftchali, A., Nadi, M., & Saber Ali, S. F. (2021). Predicting temperature and solar radiation by SDSM model based on RCP scenarios (Case Study: Gharakheil synoptic station). Irrigation and Water Engineering, 12(1), 348-363. (In Persian) https://doi.org/10.22125/iwe.2021.138350.
Aslam, M. A., Ahmed, M., Stöckle, C. O., Higgins, S. S. & Hayat, R. )2017(. Can growing degree days and photoperiod predict spring wheat phenology? Frontiers in Environmental Science, 5, 57. https://doi.org/10.3389/fenvs.2017.00057.
Baghanam, A. H., Eslahi, M., Sheikhbabaei, A., & Seifi, A. J. (2020). Assessing the impact of climate change over the northwest of Iran: An overview of statistical downscaling methods. Theoretical and Applied Climatology, 141(3), 1135-1150.
Bararkhanpour Ahmadi, S., Nadi, M., Mazloum Babanari, S., & Jedariforoughi, A. )2024(. Analyzing the effect of climate change on the trend of extreme temperatures along the coast of Mazandaran province based on CMIP6 models. Journal of Water and Soil Protection Research, 30(4), 1-27. (In Persian)
Barjaktarević, D. A. (2022). Climate changes-challenges and possible solutions. Baština, 32(57), 165-175. ‏https://doi.org/10.5937/bastina32-33831.
Bouras, E., Jarlan, L., Khabba, S., Er-Raki, S., Dezetter, A., Sghir, F., & Tramblay, Y. (2019). Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific Reports, 9(1), 19142.‏ https://doi.org/10.1038/s41598-019-55251-2.
Carvalho, D., Rafael, S., Monteiro, A., Rodrigues, V., Lopes, M., & Rocha, A. (2022). How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Scientific Reports, 12(1), 11983.‏
Darzi-Naftchali, A., Maldar-Badeli, M., Ziatabar-Ahmadi, M., & Karandish, F. (2016). Analyzing climate change effects on agriculture sustainability in Mazandaran province. Iranian Journal of Irrigation and Drainage, 9(6), 994-1004. ‏(In Persian).
Dehghan, S., Salehnia, N., Sayari, N., & Bakhtiari, B. (2020). Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: A case study in Fars province, Iran. Journal of Arid Land, 12, 318-330.‏ http://dx.doi.org/10.1007/s40333-020-0095-5.
Eckardt, N. A., Ainsworth, E. A., Bahuguna, R. N., Broadley, M. R., Busch, W., Carpita, N. C., & Zhang, X. (2023). Climate change challenges, plant science solutions. The Plant Cell, 35(1), 24-66.‏ https://doi.org/10.1093/plcell/koac303.
Eyni‐Nargeseh, H., Deihimfard, R., Rahimi‐Moghaddam, S., & Mokhtassi‐Bidgoli, A. )2019(. Analysis of growth functions that can increase irrigated wheat yield under climate change. Meteorological Applications, 27(1), 1-10. https://doi.org/10.1002/met.1804.
Fatima, Z., Abbas, G., Iqbal, P., Zakir, I., Khan, M. A., Kamal, G. M., & Ahmad, S. (2021). Quantification of climate warming and crop management impacts on phenology of pulses-based cropping systems. International Journal of Plant Production, 15, 107-123. ‏https://doi.org/10.1007/s42106-020-00112-6.
Ghazi, B., Przybylak, R., & Pospieszyńska, A. (2023). Projection of climate change impacts on extreme temperature and precipitation in Central Poland. Scientific Reports, 13(1), 18772.‏
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10.‏ https://doi.org/10.1016/j.wace.2015.08.001.
Hou, P., Liu, Y., Xie, R., Ming, B., Ma, D., Li, S. & Mei, X. )2014(. Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Research, 158, 55-64.
Ishtiaq, M., Maqbool, M., Muzamil, M., Casini, R., Alataway, A., Dewidar, A. Z., & Elansary, H. O. (2022). Impact of climate change on phenology of two heat-resistant wheat varieties and future adaptations. Plants, 11(9), 1180.‏
Jagadish, S. V., Bahuguna, R. N., Djanaguiraman, M., Gamuyao, R., & Prasad, P. V. (2016). Implications of high temperature and elevated CO2 on flowering time in plants. Frontiers in Plant Science, 7, 166037.‏ https://doi.org/10.3389/fpls.2016.00913.
Keikha, A., Khanlary, A., Ali Keikha, A., & Sabouhi, M. (2021). The effect of climate change on land usage and agricultural sector performance in Mazandaran province. Environmental Science and Technology, 22(10), 93-104. (In Persian).
Keramitsoglou, I., Sismanidis, P., Sykioti, O., Pisinaras, V., Tsakmakis, I., Panagopoulos, A., & Kiranoudis, C. T. (2023). SENSE-GDD: A satellite-derived temperature monitoring service to provide growing degree days. Agriculture, 13(5), 1108.‏ https://doi.org/10.3390/agriculture13051108.
Lalic, B., Francia, M., Eitzinger, J., Podraščanin, Z., & Arsenić, I. (2016(. Effectiveness of short‐term numerical weather prediction in predicting growing degree days and meteorological conditions for apple scab appearance. Meteorological Applications, 23(1), 50-56. http://dx.doi.org/10.1002/met.1521.
Legasa, M. N., Thao, S., Vrac, M., & Manzanas, R. (2023). Assessing three perfect prognosis methods for statistical downscaling of climate change precipitation scenarios. Geophysical Research Letters, 50(9). e2022GL102525.‏https://doi.org/10.1029/2022GL102525.
Li, K., Yang, X., Tian, H., Pan, S., Liu, Z. & Lu, S. )2016(. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. International Journal of Biometeorology, 60(1), 21-32. https://doi.org/10.1007/s00484-015-1002-1.
Liu, Y., Chen, Q., Ge, Q., Dai, J., Qin, Y., Dai, L., Zou, X., & Chen, J. )2018(. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agricultural and Forest Meteorology, 248, 518-526. http://dx.doi.org/10.1016%2Fj.agrformet.2017.09.008.
Lobell, D. B., & Gourdji, S. M. )2012(. The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686-1697.
Mehmood, V., Malik, A. I., Zafar, Z., Shahzad, M., Berns, K., & Fraz, M. M. (2023). Multi-year monitoring of wheat phenology and effect of climate change in the south Asian region using Sentinel-2 NDVI time series analysis, In Image and Signal Processing for Remote Sensing XXIX, Amsterdam, Netherlands. SPIE- International Society for Optics and Photonics. http://dx.doi.org/10.1117/12.2683148.
Meinshausen, M., Nicholls, Z., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., & Wang, H. J. (2019). The SSP greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development Discussions, 13(8) 3571–3605.‏ https://doi.org/10.5194/gmd-2019-222.
Mohammadi, E., Yazdanpnah, H., & Mohammadi, F. (2014). Event of climate change, its impact on durum wheat planting and during the growing season case study: station of Sararood, Kermanshah. Physical Geography Research, 46(2), 231-246. (In Persian) https://doi.org/10.22059/jphgr.2014.51427.
Mohammadi, H. R., Ramroudi, M., Bannayan, M., Asgharipour, M. R., & Fanaee, H. R. (2018). Effect of climate change on phenological stages and growth stages of wheat in Zabol region. Journal of Plant Ecophysiology, 10(34), 181-191. (In Persian)
Mukherjee, A., Wang, S. Y. S., & Promchote, P. )2019(. Examination of the climate factors that reduced wheat yield in Northwest India during the 2000s. Water, 11(2), 343. https://doi.org/10.3390/w11020343
Muleke, A., Harrison, M. T., De Voil, P., Hunt, I., Liu, K., Yanotti, M., & Eisner, R. (2022). Earlier crop flowering caused by global warming alleviated by irrigation. Environmental Research Letters, 17(4),044032.‏ https://doi.org/10.1088/1748-9326/ac5a66.
Munawar, S., Tahir, M. N., & Baig, M. H. A. (2022). Twenty-first century hydrologic and climatic changes over the scarcely gauged Jhelumriver basin of Himalayan region using SDSM and RCPs. Environmental Science and Pollution Research, 29, 11196-11208.‏ https://doi.org/10.1007/s11356-021-16437-2.
Nadi, M., & Dastigerdi, M. )2022(. Preparation of Mazandaran province climate map with extended de-martonne method, Second National Conference on Environmental Changes Using Remote Sensing Technology and GIS, Poster presentation, complete article, Sari, Iran. Civilica. (In Persian).
Nadi, M., & Yousefi Kebriya, A. (2024). A method for correction of tropical rainfall measuring mission satellite temperature network in Mazandaran province. Iranica Journal of Energy and Environment, 15(1), 100-110. https://doi.org/10.5829/ijee.2024.15.01.10.
Nakatsuka, T., Ide, M., Omiya, R., & Ohno, H. (2018). Effect of storage temperature and its period on bud emergence and flowering of Leucocoryne bulbs. Horticultural Research (Japan), 17(2), 211-217.‏ http://dx.doi.org/10.2503/hrj.17.211
Phukon, S. N., Kumar, M., Singh, H., & Nandy, S. (2022). Climate change and plant phenological variability. In Climate change alleviation for sustainable progression, (pp256-279). CRC Press.‏
Poggi, G. M., Aloisi, I., Corneti, S., Esposito, E., Naldi, M., Fiori, J., & Ventura, F. (2022). Climate change effects on bread wheat phenology and grain quality: A case study in the north of Italy. Frontiers in Plant Science, 13, 936991.‏ https://doi.org/10.3389/fpls.2022.936991
Rahmani, M., Jami Al-Ahmadi, M., Shahidi, A., & Hadizadeh Azghandi, M. (2014). Effects of climate change on the length of growth stages and water requirement of wheat and barley (Case Study: Birjand Plain). Journal Of Agroecology, 7(4), 443-460. In (Persian) https://doi.org/10.22067/jag.v7i4.26666
Ren, S., Qin, Q., & Ren, H. )2019(. Contrasting wheat phonological responses to climate change in global scale. Science of The Total Environment, 665,620-631. https://doi.org/10.1016/j.scitotenv.2019.01.394
Rezaei, E. E., Siebert, S., Hüging, H., & Ewert, F. )2018(. Climate change effect on wheat phenology depends on cultivar change. Scientific Reports, 8(1),48-91. https://doi.org/10.1038/s41598-018-23101-2
Ritchie, J. T., & Nesmith, D., S. )1991(. Temperature and crop development. Modeling Plant and Soil Systems, 31, 5-29.
Ruja, A., Gorinoiu, G., Suhai, K. R., Agapie, A. L., Sala, F., & Maria Istrate-Schiller, C. (2022). The effect of climate conditions on the phenological features of the autumn oat crop. Life Science and Sustainable Development, 3(1), 91-97.
Sheikhi Arjanaki, Sh., Nadi, M., Rahmaninia, J., & Mohammad Nazari, B. )2023(. Quantifying the impact of climate change on milk production in one of industrial livestock farms in Babolsar. Research on Animal Production, 14(39), 112-120. (In Persian) http://dx.doi.org/10.61186/rap.14.39.112
Sheikhi Arjanaki, Sh., Nadi, M., Rahmaninia, J., & Mohammad Nazari, B. )2021(. Climate change impacts on temperature humidity index, (Case study: Ramsar and Babolsar stations). Journal of Agricultural Meteorology, 9(2), 39-47. (In Persian)
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W.G., Majaess, F., Saenko, O.A., Seiler, Ch., Seinen, C., Shao, A., Sigmond, M., Solheim, L., Salzen, K. V., Yang, D., & Winter, B. (2019). The Canadian earth system model version 5 (CanESM5. 0.3). Geoscientific Model Development, 12(11),4823-4873. https://doi.org/10.5194/gmd-12-4823-2019.
Tang, B., Hu, W., Duan, A., Gao, K., & Peng, Y. (2022). Reduced risks of temperature extremes from 0.5 C less global warming in the Earth's three poles. Earth's Future, 10(2), 1-22.‏
Tun, W., Yoon, J., Jeon, J. S., & An, G. (2021). Influence of climate change on flowering time. Journal of Plant Biology, 64(3), 193-203.‏
Wilby, R.L., Dawson, C.W., & Barrow, E.M. (2002). SDSM-a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145-157. https://doi.org/10.1016/S1364-8152%2801%2900060-3
Yousefi Kebriya, A., Nadi, M., & Jamei, M. (2022). Combining interpolation methods and precipitation products of TRMM satellite to increase the accuracy of rainfall maps in Mazandaran province. Journal of Water and Soil Conservation, 28 (3), 49-70. (In Persian). https://doi.org/10.22069/jwsc.2022.19286.3477
Yousefi kebriya, A., Nadi, M., & Jamei, M. )2021(. Investigation of statistical and geostatistical methods in preparing the rainfall map of Mazandaran province, Journal of Watershed Management Research, 12(23), 212-223 (In Persian).
Zhang, B., Song, S., Wang, H., Guo, T., & Ding, Y. (2024). Evaluation of the performance of CMIP6 models in simulating extreme precipitation and its projected changes in global climate regions. Natural Hazardshttps://doi.org/10.1007/s11069-024-06850-4
Zhang, L., Wang, F., Song, H., Zhang, T., Wang, D., Xia, H., & Min, R. (2022). Effects of projected climate change on winter wheat yield in Henan, China. Journal of Cleaner Production, 379, 134734.‏ https://doi.org/10.1016/j.jclepro.2022.134734.