A new alternative animal feed by lipid extraction from fish by-products enriched with algae extracts

Document Type : Research Paper

Authors

1 Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, I. R. Iran. Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, I. R. Iran.

3 Bartın University, Science Faculty, Department of Molecular Biology and Genetics/Biotechnology, Bartın, Türkiye

Abstract

The current study investigated the effect of hot water extracts from Sargassum sp. and Padina sp. macroalgae in preventing the oxidation of oil extracted from rainbow trout waste over 42 days at 30 °C. The treatments were fish oil without preservatives (control: C), fish oil containing 100 ppm butylated hydroxytoluene (BHT), fish oil with 1000 ppm Sargassum sp. extract, and fish oil with 1000 ppm Padina sp. extract. The extraction yields, DPPH radical scavenging activity, and total phenolic content of Sargassum extract were higher than those of Padina extract by 10.4%, 86%, and 28%, respectively. On the 35th day, the peroxide values (PV) of the fish oil treated with Sargassum and Padina extracts were similar to the control group, with values of 33.7 and 34.3 meq O2/kg, respectively. However, p-anisidine values in the control samples increased significantly (P < 0.05) over the 42 days compared to the other groups. Total oxidation (TOTOX) and free fatty acid (FFA, expressed as oleic acid) values of the fish oils treated with Sargassum and Padina extracts were significantly lower than those of the control samples (P < 0.05). Additionally, UV232 absorbance values were higher in the control group compared to the samples treated with macroalgae extracts. Color difference (ΔE) and whiteness index (WI) values remained within acceptable ranges for all samples. These findings, particularly the promising effects of Sargassum extract, suggest its potential as a natural preservative in fish oil, offering valuable insights for future studies.

Keywords

Main Subjects


Article Title [Persian]

خوراک جدید با روغن استخراج شده از محصول جانبی ماهی غنی شده با عصاره جلبک

Authors [Persian]

  • نسا موسوی پور 1
  • صدیقه بابایی 1
  • مرضیه موسوی نسب 2
  • ظفر سیلان 3
1 بخش مهندسی منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
2 بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران مرکز پژوهشی فرآوی آبزیان، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
3 هیئت علمی، گروه بیولوژی مولکولی و ژنتیک/بیوتکنولوژی، دانشکده علوم، ترکیه
Abstract [Persian]

مطالعه حاضر به بررسی اثر عصاره آب گرم از ماکروجلبکهای Sargassum sp. و Padina sp. در جلوگیری از اکسیداسیون روغن استخراج شده از ضایعات ماهی قزل آلای رنگین کمان طی 42 روز در دمای 30 درجه سانتی گراد پرداخته است. تیمارها شامل روغن ماهی بدون مواد نگهدارنده(شاهد)، روغن ماهی حاویppm  100 هیدروکسی تولوئن بوتیله (BHT)، روغن ماهی حاوی  ppm1000 عصاره جلبک سارگاسوم و روغن ماهی حاوی ppm 1000  عصاره جلبک پادینا بودند. بازده استخراج، مهار رادیکال آزاد  DPPH و محتوای فنلی کل عصاره سارگاسوم به ترتیب 10/4، 86 و 28 درصد بودند که بیشتر از عصاره پادینا گزارش شدند. در روز 35، مقادیر پراکسید (PV) روغن ماهی تیمار شده با عصاره‌های سارگاسوم و پادینا مشابه گروه شاهد بودند و به ترتیب مقادیر 33/77 و 34/3 meq O2/kg  بودند. با این حال، مقدار آنیزیدین در نمونه‌های کنترل به طور معنی‌داری در 42 روز نسبت به سایر گروه‌ها افزایش یافت (P < 0.05). مقدار شاخص توتوکس و اسید چرب آزاد، در روغن ماهی تیمار شده با عصاره‌های سترگاسوم و پادینا به طور معنی‌داری کمتر از نمونه‌های شاهد بود(P < 0.05) . علاوه بر این، مقادیر جذب UV232 در گروه شاهد در مقایسه با روغن های تیمار شده با عصاره ماکروجلبکها بالاتر بود. مقادیر تفاوت رنگ (ΔE) و شاخص سفیدی (WI)  در محدوده قابل قبول برای همه نمونه ها باقی ماند. این یافته ها، به ویژه اثرات امیدوارکننده عصاره سارگاسوم، پتانسیل آن را به عنوان یک نگهدارنده طبیعی در روغن ماهی نشان می دهد و نگرش ارزشمندی را برای مطالعات آینده ارائه می دهد.

Keywords [Persian]

  • روغن ماهی
  • جلبک دریایی
  • عدد پراکسید
  • فساد اکسیداتیو
Agregán, R., Lorenzo, J. M., Munekata, P. E., Dominguez, R., Carballo, J., & Franco, D. (2017). Assessment of the antioxidant activity of Bifurcaria bifurcata aqueous extract on canola oil. Effect of extract concentration on the oxidation stability and volatile compound generation during oil storage. Food Research International, 99, 1095-1102.‏ https://doi.org/10.1016/j.foodres.2016.10.029
Annett, R. W., Dawson, L. E. R., Edgar, H., & Carson, A. F. (2009). Effects of source and level of fish oil supplementation in late pregnancy on feed intake, colostrum production and lamb output of ewes. Animal Feed Science and Technology, 154,169–182. https://doi.org/10.1016/j.anifeedsci.2009.09.002
Arabameri, M., Nazari, R. R., Abdolshahi, A., Abdollahzadeh, M., Mirzamohammadi, S., Shariatifar, N., & Mousavi Khaneghah, A. (2019). Oxidative stability of virgin olive oil: evaluation and prediction with an adaptive neuro‐fuzzy inference system (ANFIS). Journal of the Science of Food and Agriculture, 99(12), 5358-5367.
Babakhani Lashkan, A., Rezaei, M., Rezaei, K., & Seifabadi, S. J. (2012). Optimization of extraction of antioxidant compounds in microwave-assisted extracts of brown algae Sargassum angustifolium. Journal of Fisheries, 65(3), 243-255.
‏https://doi.org/10.22059/jfisheries.2012.29488
Bittkau, K. S., Neupane, S., & Alban, S., (2020). Initial evaluation of six different brown algae species as source for crude bioactive fucoidans. Algal Research, 101759. https://doi.org/10.1016/j.algal.2019.101759
Bligh, E. G., & Dyer, W. J., (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. https://doi.org/10.1139/o59-099
Bora, A. F. M., Ma, S., Li, X., & Liu, L., (2018). Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International, 105, 241-249.
Boudhrioua, N., Bahloul, N., Slimen, I. B., & Kechaou, N., (2009). Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Industrial Crops and Products, 29(2-3), 412-419. https://doi.org/10.1016/j.indcrop.2008.08.001
Carocho, M., & Ferreira, I. C., (2013). A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15-25.‏
Ceylan, Z., Meral, R., Cavidoğlu, İ., Karakas, C. Y., & Yılmaz, M. T. (2018). A new application on fatty acid stability of fish fillets: Coating with probiotic bacteria-loaded polymer-based characterized nanofibers. Journal of Food Safety, 38(6), e12547. https://doi.org/10.1111/jfs.12547
Ceylan, Z., Budama Kilinc, Y., Yılmaz, A., Ünal, K., & Özdenir, B. (2022). Production of rosmarinic acid nanoparticles, and ınvestigation of anti-oxidation effects on salmon fish meat. Journal of the Turkish Chemical Society Section A: Chemistry, 9(2), 311-320. https://doi.org/10.18596/jotcsa.1022787
Chew, Y. L., Lim, Y. Y., Omar, M., & Khoo, K. S., (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Science and Technology, 41(6), 1067-1072.‏ https://doi.org/10.1016/j.lwt.2007.06.013
Cho, S. H., Kang, S. E., Cho, J. Y., Kim, A. R., Park, S. M., Hong, Y. K., & Ahn, D.H. (2007). The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. Journal of Medicinal Food, 10(3), 479-485.‏ https://doi.org/10.1089/jmf.2006.099
Chung, H. S., Kim, J. K., Moon, K. D., & Youn, K. S. (2014). Changes in color parameters of corn kernels during roasting. Food Science and Biotechnology, 23(6), 1829-1835.‏ https://doi.org/10.1007/s10068-014-0250-x
Ciriminna, R., Scurria, A., Avellone, G., & Pagliaro, M. (2019). A circular economy approach to fish oil extraction. Chemistry Select, 4(17), 5106-5109.‏ https://doi.org/10.1002/slct.201900851
Deepika, D., Vegneshwaran, V. R., Julia, P., Sukhinder, K. C., Sheila, T., Heather, M., & Wade, M. (2014). Investigation on oil extraction methods and its influence on omega-3 content from cultured salmon. Journal of Food Processing and Technology, 5(12), 1-13. https://doi.org/10.4172/2157-7110.1000401
Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296-302.
Ebrahimi, S., Babaei, S., Naseri, M., & Golmakani, M.T. (2021). Polyphenol’s content, antioxidant and antibacterial activities of seaweeds from the Persian Gulf. Environmental Engineering & Management Journal, 20, 1203-1211.
http://eemj.icpm.tuiasi.ro/pdfs/vol20/no7/Full/16_263_Ebrahimi_20.pdf
Echegaray, N., Munekata, P. E. S. Centeno, J. A., Domínguez, R., Pateiro, M., Carballo, J., & Lorenzo, J. M. (2021). Total phenol content and antioxidant activity of different celta pig carcass locations as affected by the finishing diet (Chestnuts or Commercial Feed). Antioxidants, 10(1), 1-19. https://doi.org/10.3390/antiox10010005
Farvin, K. S., & Jacobsen, C., (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3), 1670-1681.
Fouda, T., (2018). Waste management for smoking salmon by-products to extract omega-3 fish oil. Fisheries and Aquaculture Journal, 18(3),‏ 127-130. https://managementjournal.usamv.ro/pdf/vol.18_3/Art17.pdf
Ghaly, A. E., Ramakrishnan, V. V., Brooks, M. S., Budge, S. M., & Dave, D. (2013). Fish processing wastes as a potential source of proteins. Amino acids and oils: A critical review. J. Microb. Biochem. Technol, 5(4), 107-129.‏ http://dx.doi.org/10.4172/1948-5948.1000110
Gokoglu, N., Yerlikaya, P., Topuz, O.K., Buyukbenli, H. A. (2012). Effects of plant extracts on lipid oxidation in fish croquette during frozen storage. Food Science and Biotechnology, 21(6), 1641-1645.
‏https://doi.org/10.1007/s10068-012-0218-7
Haq, S. H., Al-Ruwaished, G., Al-Mutlaq, M. A., Naji, S. A., Al-Mogren, M., Al-Rashed, S., Ain, Q. T., Al-Amro, A. A., & Al-Mussallam, A., (2019). Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Scientific reports, 9(1), 1-7.
‏https://doi.org/10.1038/s41598-019-55309-1 1
Jamshidi, A., Cao, H., Xiao, J., & Simal-Gandara, J. (2020). Advantages of techniques to fortify food products with the benefits of fish oil. Food Research International, 137, 109353.
Katerina, K., Berge, G. M., Turid, M., Aleksei, K., Grete, B., Trine, Y., Mats, C., John, S., & Bente, R., (2020). Microalgal Schizochytrium limacinum biomass improves growth and filet quality when used long-term as a replacement for fish oil, in modern salmon diets. Frontiers in Marine Science, 7, 1-22. https://doi.org/10.3389/fmars.2020.00057
Kindleysides, S., Quek, S., Miller., & M. R. (2012). Inhibition of fish oil oxidation and the radical scavenging activity of New Zealand seaweed extracts. Food Chemistry, 133(4), 1624–1631. https://doi.org/10.1016/j.foodchem.2012.02.068
Kolanowski, W. (2008). Seasonal variability in intake of fish oil dietary supplements among inhabitants of Warsaw. Nutrition Research, 28(4), 245-250.‏ https://doi.org/10.1016/j.nutres.2008.02.006
Kop, A., Gamsız, K., Korkut, A.Y., & Sayğı, H. (2019). The effects of different storage temperatures and durations on peroxide values of fish feed ingredients. Turkish Journal of Agriculture-Food Science and Technology, 7, 43-49.
Kumar, P. S., & Sudha, S. (2012). Evaluation of antioxidant activity and total phenolic content of Padina boergesenii from Gulf of Mannar. Drug Invention Today, 4(12), 635-639.‏ Retrieved from: https://www.ditonline.info/
Lee, M. C., Tan, C., & Abbaspourrad, A. (2019). Combination of internal structuring and external coating in an oleogel-based delivery system for fish oil stabilization. Food Chemistry, 277, 213-221.‏ https://doi.org/10.1016/j.foodchem.2018.10.112
Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food chemistry, 102(3), 771-776.‏ https://doi.org/10.1016/j.foodchem.2006.06.022
Mnari, A., Bouhlel, I., Chraief, I., Hammami, M., Romdhane, M.S., El Cafsi M., & Chaouch, A., (2007). Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chemistry, 100, 1393–1397.
Mousavipour, N., Babaei, S., Moghimipour, E., & Moosavi-Nasab, M. (2021a). Effect of Caulerpa sp. extract on improving the oxidation intensity of rainbow trout waste oil during storage at room temperature. Journal of Fisheries, 74(2), 165-179.
Mousavipour, N., Babaei, S., Moghimipour, E., Moosavi-Nasab, M., & Ceylan, Z. (2021b). A novel perspective with characterized nanoliposomes: Limitation of lipid oxidation in fish oil. LWT, 152, 112387. https://doi.org/10.1016/j.lwt.2021.112387
Najafi, V., Barzegar, M., & Sahari, M. A. (2015). Physicochemical properties and oxidative stability of some virgin and processed olive oils. Journal of Agricultural Science and Technology. JKUAT, 17(4), 847–858. 20.1001.1.16807073.2015.17.4.7.4
Nakajima, K., Yoshie-Stark, Y., & Ogushi, M. (2009). Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates. Food Chemistry, 114, 844–851.
O'brien, R. D. (2008). Fats and oils: Formulating and processing for applications. (3rd Ed). Florida, USA: CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781420061673
Park, P. J., Shahidi, F., & Jeon, Y. J. (2004). Antioxidant activities of enzymatic extracts from an edible seaweed Sargassum horneri using ESR spectrometry. Journal of Food Lipids, 11(1), 15–27.
Ponomarev, S., Levina, O., Fedorovykh, Y., Akhmedzhanova, A., Nikiforov-Nikishin, A., & Klimov, V. (2022). Feed additive for fishdiet with antioxidant and immunostimulating effect. In E3S Web of Conferences (Vol. 363, p. 03036). EDP Sciences. https://doi.org/10.1051/e3sconf/202236303036
Punampalam, R., Khoo, K. S., & Sit, N. M., (2018). Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea. Malaysian Journal of Fundamental and Applied Sciences, 14(2), 289-297.‏ https://doi.org/10.11113/mjfas.v14n2.1096
Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food chemistry, 220, 115-122.‏ https://doi.org/10.1016/j.foodchem.2016.09.207
Raeisi, S., Ojagh, S. M., Pourashouri, P., Salaün, F., & Quek, S. Y. (2021). Shelf-life and quality of chicken nuggets fortified with encapsulated fish oil and garlic essential oil during refrigerated storage. Journal of Food Science and Technology, 58(1), 121-128.‏ https://doi.org/10.1007/s13197-020-04521-3
Sabeena Farvin, K. H., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2–3), 1670–1681.
Sabzipour, F., Naseri, M., Babaei, S., & Imani, A. (2019). Effect of various postmortem processing times and blanching methods on quality of rainbow trout (Oncorhynchus mykiss) waste oil. Food Science & Nutrition, 7(9), 3093-3102.‏
Santoso, J., Yoshie-Stark, Y., & Suzuki, T. (2004). Anti-oxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fisheries Science, 70(1), 183–188. https://doi.org/10.1111/j.1444-2906.2003.00787.x
Shahidi, F., & Zhong, Y. (2005). Lipid oxidation: Measurement methods, in bailey’s industrial oil and fat products. USA: John Wiley & Sons, Ltd. https://doi.org/10.1002/047167849X.bio050
Shurson, G. C., Kerr, B. J., & Hanson, A. R. (2015). Evaluating the quality of feed fats and oils and their effects on pig growth performance. Journal of Animal Science and Biotechnology, 6(1), 1-11.
https://doi.org/10.1186/s40104-015-0005-4
Šimat, V., Ficović, M., Čagalj, M., Skroza, D., Ljubenkov, I., & Generalić Mekinić, I. (2017). Preventive effect of herb extracts on lipid oxidation in fish oil. Hrvatski časopis za prehrambenu tehnologiju, biotehnologiju i nutricionizam, 12(1-2), 30-36. Retrieved from: https://hrcak.srce.hr/189309
‏Siriwardhana, N., Lee, K. W., Kim, S. H., Ha, J. H., Park, G.T., & Jeon, Y. J. (2004). Lipid peroxidation inhibitory effects of Hizikia fusiformis methanolic extract on fish oil and linoleic acid. Food Science and Technology International, 10(2), 65-72.‏
Topuz, O. K., Yerlikaya, P., Uçak, İ., Gümüş, B., Büyükbenli, H. A., & Gökoğlu, N. (2015). Influence of pomegranate peel (Punica granatum) extract on lipid oxidation in anchovy fish oil under heat accelerated conditions. Journal of Food Science and Technology, 52(1), 625-632.‏
https://doi.org/10.1007/s13197-014-1517-1
Valizadeh, S., Naseri, M., Babaei, S., Hosseini, S. M. H., & Imani, A. (2019). Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. International Journal of Biological Macromolecules, 134, 604-612.‏
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vardizadeh, F., Babaei, S., Naseri, M., & Golmakani, M. T. (2021). Effect of marine sulfated polysaccharides derived from Persian Gulf seaweeds on Oncorhynchus mykiss oil stability under accelerated storage conditions. Algal Research, 60, 102553.‏ https://doi.org/10.1016/j.algal.2021.102553
Varona, E., Tres, A., Rafecas, M., Vichi, S., Sala, R., & Guardiola, F. (2021). Oxidative quality of acid oils and fatty acid distillates used in animal feeding. Animals, 11(9), 2559. https://doi.org/10.3390/ani11092559
Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248.‏
Wang, H., Liu, F., Yang, L., Zu, Y., Wang, H., Qu, S., & Zhang, Y. (2011). Oxidative stability of fish oil supplemented with carnosic acid compared with synthetic antioxidants during long-term storage. Food Chemistry, 128(1), 93-99.‏
Wang, Y. Z., Fu, S. G., Wang, S. Y., Yang, D. J., Wu, Y. H. S., & Chen, Y. C., (2018). Effects of a natural antioxidant, polyphenol-rich rosemary (Rosmarinus officinalis L.) extract, on lipid stability of plant-derived omega-3 fatty-acid rich oil. LWT, 89, 210-216.‏ https://doi.org/10.1016/j.lwt.2017.10.055
Yangthong, M., Hutadilok-Towatana, N., & Phromkunthong, W. (2009). Antioxidant activities of four edible seaweeds from the southern coast of Thailand. Plant Foods for Human Nutrition, 64(3), 218-223. https://doi.org/10.1007/s11130-009-0127-y
Yildirim, Ö., & Çantaş, İ. B., (2020). A study on the time-dependent change of totox values in feeds of marine fish. Journal of Anatolian Environmental and Animal Sciences, 5(2), 264-269.
Yue, X., Xu, Z., Prinyawiwatkul, W., Losso, J. N., King, J. M., & Godber, J. S. (2008). Comparison of soybean oils, gum, and defatted soy flour extract in stabilizing menhaden oil during heating. Journal of Food Science73(1), C19-C23.‏