Colostrum and blood oxidative stress indices: Effects on growth performance and health in neonatal Holstein calves

Document Type : Research Paper

Authors

Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

This research evaluated the blood and colostrum oxidative stress index (OSi) in newborn Holstein calves and its potential correlations with nutrient intake, growth performance, skeletal development, diarrhea, and pneumonia. Eighty-three neonatal Holstein calves were categorized based on their blood and consumed colostrum OSi levels. There were four treatment groups, i.e., 25 calves consumed low OSi colostrum that had low OSi in the blood taken 24-h after first meal consumption of colostrum (LL), 17 calves consumed low OSi colostrum that had high OSi in the blood (LH), 22 calves consumed high OSi colostrum that had low OSi in the blood (HL), and 19 calves consumed high OSi colostrum that had high OSi in the blood (HH). Upon categorization, the performance and health outcomes of the calves were thoroughly assessed. The results revealed no significant disparities among the treatment groups regarding nutrient intake and skeletal growth. Initial and final body weights, average daily gain (ADG), and feed efficiency had no observable differences. However, substantial differences were evident in the incidence of diarrhea (HH vs. LH, HL vs. LL, and LH vs. LL), pneumonia occurrence (HH vs. LH), and the number of days with body temperatures higher than 39.4 °C were similar across all groups. Moreover, a significant variation was noted in the duration of diarrhea, with the LL group experiencing more days under medication than the other treatment groups. Pronounced variations in calf health, particularly regarding diarrhea and pneumonia, suggesting a potential association between oxidative stress and specific health outcomes in newborn Holstein calves.

Keywords

Main Subjects


Article Title [Persian]

شاخص تنش اکسیداتیو آغوز و خون: اثر بر عملکرد رشد و سلامت گوساله های تازه متولد شده هولشتاین

Authors [Persian]

  • سولماز نامداری
  • محمد دادپسند
  • شهریار کارگر
  • محمد رضا جعفرزاده شیرازی
  • امیر اخلاقی
بخش علوم دامی، دانشکده کشاورزی دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

هدف از انجام این آزمایش، ارزیابی شاخص تنش اکسیداتیو در خون و آغوز مصرفی گوساله‌های تازه ‌متولد‌ شده هلشتاین و ارتباط این شاخص‌ها با خوراک مصرفی، عملکرد رشد، تکامل اسکلتی، بیماری‌های پنومونی و اسهال است. تعداد 83 رأس گوساله با میانگین وزنی 4±37 کیلو‌گرم) بر‌اساس شاخص تنش اکسیداتیو آغوز مصرفی و خون به 4 گروه، 25 گوساله شاخص تنش اکسیداتیو پایین‌تر از میانگین جمعیت در آغوز مصرفی و خون (LL)، 17 گوساله شاخص تنش اکسیداتیو پایین‌تر از میانگین جمعیت در آغوز مصرفی و بالاتر از میانگین جمعیت در خون (LH)، 22 گوساله شاخص تنش اکسیداتیو بالاتر از میانگین جمعیت در آغوز مصرفی و پایین‌تر از میانگین جمعیت در خون (HL) و 19 گوساله شاخص تنش اکسیداتیو بالاتر از میانگین جمعیت در آغوز مصرفی و خون (HH) تقسیم‌بندی شدند. پس از گروه‌بندی، عملکرد و سلامت گوساله‌ها ارزیابی شد. نتایج نشان دادند خوراک مصرفی و رشد اسکلتی، وزن اولیه و نهایی، میانگین افزایش وزن روزانه و کارایی مصرف خوراک در بین گروه‌ها تفاوت معنی‌داری نداشتند. اگر‌چه تفاوت‌های قابل ‌توجه‌ای در وقوع بیماری‌های نومونی و اسهال و طول دوره اسهال نیز مشاهده شد اما روز‌هایی که دمای راست روده گوساله‌ها به بالای 39 درجه سانتی‌گراد می‌رسید، در بین گروه‌ها یکسان بود. با توجه به این تغییرات در سلامت گوساله‌ها می‌توان نتیجه گرفت که بین تنش اکسیداتیو و سلامت گوساله‌های تازه‌ متولد ‌شده هلشتاین همبستگی وجود دارد.

Keywords [Persian]

  • آنتی‌اکسیدان
  • اسهال
  • نمونیا
  • گونه‌های کنش‌گر اکسیژن و نیتروژن
Abuelo, A., Hernández, J., Benedito, J. L., & Castillo, C. (2013). Oxidative stress index (OSi) as a new tool to assess redox status in dairy cattle during the transition period. Animal, 7, 1374-1378. https://doi.org/10.1017/S1751731113000396.
Abuelo, Á., Pérez-Santos, M., Hernández, J., & Castillo, C. (2014). Effect of colostrum redox balance on the oxidative status of calves during the first 3 months of life and the relationship with passive immune acquisition. Veterinary Journal, 199, 295-299. https://doi.org/10.1016/j.tvjl.2013.10.032.
Abuelo, A., Gandy, J., Neuder, L., Brester, J., & Sordillo, L. (2016). Markers of oxidant status and inflammation relative to the development of claw lesions associated with lameness in early lactation cows. Journal of Dairy Science, 99, 5640-5648. https://doi.org/10.3168/jds.2015-10707.
Abuelo, A., Hernández, J., Benedito, J. L., & Castillo, C. (2019). Redox biology in transition periods of dairy cattle: Role in the health of periparturient and neonatal animals. Antioxidant, 8, 20. https://doi.org/10.3390/antiox8010020
Akyüz, E., & Gökce, G. (2021). Neopterin, procalcitonin, clinical biochemistry, and hematology in calves with neonatal sepsis. Tropical Animal Health and Production, 53, 1-8. https://doi.org/10.1007/s11250-021-02779-z.
Albera, E., & Kankofer, M. (2011). The comparison of antioxidative/oxidative profile in blood, colostrum and milk of early post‐partum cows and their newborns. Reproduction of Domestic Animals, 46, 763-769.
Aydoğdu, U., Yildiz, R., Güzelbekteş, H., Naseri, A., Akyüz, E., & Şen, İ. (2018). Effect of combinations of intravenous small volume hypertonic sodium chloride, acetate Ringer, sodium bicarbonate, and lactate Ringer solutions along with oral fluid on the treatment of calf diarrhea. Polish Journal of Veterinary Sciences, 21, 273-280.
Cemek, M., Çaksen, H., Bayiroğlu, F., Cemek, F., & Dede, S. (2006). Oxidative stress and enzymic–non‐enzymic antioxidant responses in children with acute pneumonia: Cellular biochemistry and its modulation by active agents or disease. Cell Biochemistry and Function, 24, 269-273.
Cho, Y., & Yoon, K. (2014). An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. Journal of Veterinary Science, 15, 1-17. DOI: https://doi.org/10.4142/jvs.2014.15.1.1.
Cuervo, W., Sordillo, L. M., & Abuelo, A. (2021). Oxidative stress compromises lymphocyte function in neonatal dairy calves. Antioxidant, 10, 255. https://doi.org/10.3390/antiox10020255.
Demling, R., Lalonde, C., & Seekamp, A. (1988). Endotoxin causes hydrogen peroxide-induced lung lipid peroxidation and prostanoid production. Archives of Surgery, 123, 1337-1341. http://doi:10.1001/archsurg.1988.01400350051007.
Doelman, C. J., & Bast, A. (1990). Oxygen radicals in lung pathology. Free Radical Biology and Medicine, 9, 381-400.
Ewaschuk, J. B., Naylor, J. M., Palmer, R., Whiting, S. J., & Zello, G. A. (2004). D‐lactate production and excretion in diarrheic calves. Journal of Veterinary Internal Medicine, 18, 744-747.
Ferrari, R. S., & Andrade, C. F. (2015). Oxidative stress and lung ischemia-reperfusion injury. Oxidative Medical and Cellular Longevity, 2015, 1-14.
Fisher-Hoch S. P., Mathews, C. E., & McCormick, J. B. (2013). Obesity, diabetes and pneumonia: The menacing interface of non-communicable and infectious diseases. Tropical Medicine and international Health, 18, 1510-1519.
Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2017). Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation, 114, 1752-1761. 10.1172/JCI21625.
Gaál, T., Ribiczeyné-Szabó, P., Stadler, K., Jakus, J., Reiczigel, J., Kövér, P., Mezes, M., & Sümeghy, L. (
 
2006). Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143, 391-396.
Granot, E., Binsztok, M., Fraser, D., Deckelbaum, R., & Weizman, Z. (2001). Oxidative Stress is not enhanced in non-malnourished infants with persistent diarrhea. Journal of Tropical Pediatrics, 47, 284-287. https://doi.org/10.1093/tropej/47.5.284
Heinrichs, A., Jones, C., VanRoekel, L., & Fowler, M. (2003). Calf Track: A system of dairy calf workforce management, training, and evaluation and health evaluation. Journal of Dairy Science, 86, 115.
Iranian Council of Animal Care. (1995). Guide to the care and use of experimental animals, Vol. 1. Isfahan, Iran: Isfahan University of Technology.
Kankofer, M., & Lipko-Przybylska, J. (2008). Physiological antioxidative/oxidative status in bovine colostrum and mature milk. Acta Veterinaria, 58, 231-239. https://doi.org/10.2298/AVB0803231K.
Kargar, S., Roshan, M., Ghoreishi, S., Akhlaghi, A., Kanani, M., Shams-Abadi, A. A., & Ghaffari, M. (2020). Extended colostrum feeding for 2 weeks improves growth performance and reduces the susceptibility to diarrhea and pneumonia in neonatal Holstein dairy calves. Journal of Dairy Science, 103, 8130-8142. https://doi.org/10.3168/jds.2020-18355
Kertz, A. F., Hill, T. M., Quigley, J. D., Heinrichs, A. J., Linn, J. G., & Drackley, J. K. (2017). A 100-year review: Calf nutrition and management. Journal of Dairy Science, 100, 10151-10172. https://doi.org/10.3168/jds.2017-13062.
Lang, J. D., McArdle, P. J., O'Reilly, P. J., & Matalon, S. (2002). Oxidant-antioxidant balance in acute lung injury. Chest, 122, 314-320. https://doi.org/10.1378/chest.122.6_suppl.314S.
Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., Lamb, R. C., & Muller, L. D. (1977). Guidelines toward more uniformity in measuring and reporting calf experimental data. Journal of Dairy Science, 60, 989-991.
Lauritzen, B., Lykkesfeldt, J., Skaanild, M. T., Angen, Q., Nielsen, J. P., & Friis, C. (2003). Putative biomarkers for evaluating antibiotic treatment: An experimental model of porcine Actinobacillus pleuropneumoniae infection. Research in Veterinary Science, 74, 261-270.
Ledwozyw, A., & Stolarczyk, H. (1992). The involvement of polymorphonuclear leukocytes in the pathogenesis of bronchopneumonia in calves. VI. Superoxide dismutase and lipoprotein lipase activities. Acta Veterinaria Hungarica, 40, 267-277.
Lesmeister, K. E., & Heinrichs, A. J. (2005). Effects of adding extra molasses to a texturized calf starter on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. Journal of Dairy Science, 88, 411-418.
Ling, T., Hernandez-Jover, M., Sordillo, L. M., & Abuelo, A. (2018). Maternal late-gestation metabolic stress is associated with changes in immune and metabolic responses of dairy calves. Journal of Dairy Science, 101, 6568-6580. https://doi.org/10.3168/jds.2017-14038.
Lykkesfeldt, J., Svendsen, O. (2007). Oxidants and antioxidants in disease: oxidative stress in farm animals. Veterinary Journal, 173, 502-511. https://doi.org/10.1016/j.tvjl.2006.06.005.
MacNee, W. (2000). Oxidants/antioxidants and COPD. Chest, 117, 303-317.
McGuirk, S. M., & Collins, M. (2004). Managing the production, storage, and delivery of colostrum. Veterinary Clinics of North America: Food Animal Practice, 20, 593-603.
Mutinati, M., Pantaleo, M., Roncetti, M., Piccinno, M., Rizzo, A., & Sciorsci, R. L. (2014). Oxidative stress in neonatology: A review. Reproduction of Domestic Animals, 49, 7-16. https://doi.org/10.1111/rda.12230.
Niemann, B., Rohrbach, S., Miller, M. R., Newby, D. E., Fuster, V., & Kovacic, J. C. (2017). Oxidative stress and cardiovascular risk: Obesity, diabetes, smoking, and pollution: Part 3 of a 3-part series. Journal of the American College of Cardiology, 70, 230-251. https://doi.org/10.1016/j.jacc.2017.05.043
Pacht, E. R., Timerman, A. P., Lykens, M. G., & Merola, J. (1991). Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome. Chest, 100, 1397-1403.
Pazoki, A., Ghorbani, G. R., Kargar, S., Sadeghi-Sefidmazgi, A., Drackley, J. K., & Ghaffari, M. H. (2017). Growth performance, nutrient digestibility, ruminal fermentation, and rumen development of calves during transition from liquid to solid feed: Effects of physical form of starter feed and forage provision. Animal Feed Science and Technology, 234, 173-185. https://doi.org/10.1016/j.anifeedsci.2017.06.004
Przybylska, J., Albera, E., & Kankofer, M. (2007). Antioxidants in bovine colostrum. Reproduction in Domestic Animals, 42, 402-409. https://doi.org/10.1111/j.1439-0531.2006.00799.x