A higher proportion of female lambs in Kurdish × Romanov ewes fed a diet rich in n-3 fatty acids and rumen undegradable protein around mating

Document Type : Research Paper

Authors

1 Department of Animal Science, Ilam University, Ilam, I. R. Iran.

2 Animal Science Research Department, Ilam Agricultural and Natural Resources Research and Education Centre, AREEO, Ilam, I. R. Iran

3 Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Centre, AREEO, Shahrekord 88156–89554, I. R. Iran

4 Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441–65186, I. R. Iran

5 NSW Department of Primary Industries, Wagga Agricultural Institute,

Abstract

An increased intake of rumen undegradable protein (RUP) or n-3 fatty acids (FA) around mating is connected with improved reproductive efficiency in ewes. This experiment was aimed to study whether the ratio of female lambs was greater when Kurdish × Romanov ewes were received a diet rich in n-3 FA and RUP together around mating. Experimental diets were supplemented with 5% (DM basis) Ca salts of saturated FA (SFA), 5% Ca salts of fish oil (as n-3 FA source; n-3FO), or a combination of 5% Ca salts of fish oil and 5% fish meal (as a RUP source; n-3FO+RUP). The results showed that the proportion of total n-3 polyunsaturated FA (PUFA) in plasma increased and the n-6:n-3 decreased at CIDR removal day in animals received the n-3FO+RUP diet (P < 0.05) compared with the other diets. Plasma concentrations of oestradiol, glucose, and urea nitrogen (UN) at the day of oestrus (P < 0.05) was also lower when ewes received the n-3FO+RUP diet compared with the other diets. The ratio of female lambs was greater when ewes were fed the n-3FO+RUP diet around mating (P < 0.05) and was greater than an expected 50:50 ratio (72% females, P = 0.028). It was concluded that feeding ewes a diet rich in n-3 FA and RUP content around mating, rather than n-3 FA alone, could skew the sex ratio of lambs toward females. 

Keywords

Main Subjects


Article Title [Persian]

افزایش نسبت ماده زایی در میش های کردی - رومانوف با تغذیه جیره دارای اسید چرب امگا -3 و پروتئین غیر قابل تجزیه در شکمبه در زمان نزدیک به جفت گیری

Authors [Persian]

  • مرضیه فتاحی 1
  • فرشید فتاح نیا 1
  • هوشنگ جعفری 2
  • گلناز تأسلی 3
  • امین اله پورملکشاهی 2
  • شهریار کارگر 4
  • ادوارد. اچ کلایتون 5
1 دانش آموخته کارشناسی ارشد تغذیه دام گروه علوم دامی دانشکده کشاورزی دانشگاه ایلام.
2 استادیار پژوهشی بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، ‏سازمان تحقیقات، آموزش و ترویج کشاورزی،
3 استادیار پژوهشی بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، ‏سازمان تحقیقات،
4 گروه علوم دامی دانشکده کشاورزی دانشگاه شیراز
5 عضو هیئت علمی بخش صنایع اولیه کشاورزی، مؤسسه کشاورزی واگا، نیوساوت ولز، استرالیا
Abstract [Persian]

مصرف پروتئین غیرقابل تجزیه در شکمبه و یا اسیدچرب امگا-3 در زمان نزدیک به جفت‌گیری در میش باعث بهبود عملکرد تولیدمثلی میش شده است. هدف پژوهش حاضر این بود که آیا مصرف پروتئین غیرقابل تجزیه در شکمبه و اسیدچرب امگا-3 در زمان نزدیک به جفت‌گیری در میش‌های باعث افزایش نسبت بره‌های ماده متولد شده می‌شود. جیره‌های آزمایشی شامل جیره دارای 5 درصد (بر اساس ماده خشک) مکمل اسیدهای چرب اشباع، جیره دارای 5 درصد مکمل اسیدهای چرب امگا-3 و جیره دارای 5 درصد اسیدهای چرب امگا-3 و 5 درصد پودر ماهی بودند. نتایج نشان داد که در روز برداشت سیدر مقدار اسیدهای چرب با چند پیوند دوگانه و نسبت اسیدهای چرب امگا-6 به امگا-3 پلاسما در میش‌های تغذیه شده با جیره دارای نمک کلسیمی اسیدهای چرب امگا-3 و پروتئین غیرقابل تجزیه در شکمبه، به‌ترتیب بیشتر و کمتر از سایر گروه‌ها بود (0/05 > P)  غلظت استرادیول، گلوکز و اوره پلاسما در روز فحلی در میش‌های تغذیه شده با جیره دارای اسیدهای چرب امگا-3 و پروتئین غیرقابل تجزیه در شکمبه در مقایسه با سایر گروه‌ها پایین‌تر(0/05 > P)  و درصد بره‌های ماده بالاتر (72 درصد، 0/028= P) از میزان مورد انتظار 50:50 بود. تغذیه جیره دارای اسیدهای چرب امگا-3 و پروتئین غیرقابل تجزیه در شکمبه در زمان نزدیک به جفت‌گیری باعث افزایش تعداد بره‌های ماده شد.

Keywords [Persian]

  • برنامه ریزی جنینی
  • نسبت جنسی بره
  • اسید چرب امگا-3
  • پروتئین غیر قابل تجزیه در شکمبه
Abayasekara, D. R. E., & Wathes, D. C. (1999). Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins, Leukotrienes and Essential Fatty Acids 61, 275-87. http://doi:10.1054/plef.1999.0101.
Alhimaidi, A. R., Aiman, A. A., Muath, Q. A., Al Saiady, M.Y., Amran, R.A., & Swelum, A.A. (2021). Sex preselection of sheep embryo by altering the minerals of maternal nutrition. Saudi Journal of Biological Sciences, 28, 680-684. http://doi: 10.1016/j.sjbs.2020.10.059.
Association of official analytical chemists (AOAC). (2007). International, official methods of analysis. 18th ed.MD, USA: AOAC, Gaithersburg
Arangasamy, A., Selvaraju, S., Parthipan, S., Somashekar, L., Rajendran, D., & Ravindra, J. (2015). Role of calcium and magnesium administration on sex ratio skewing, follicular fluid protein profiles and steroid hormone level and oocyte transcripts expression pattern in Wistar rat. Indian Journal of Animal Science, 85, 1190-1194. https://doi.org/10.56093/ijans.v85i11.53227.
Bach, A., Calsamiglia, S., & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88, E9-E21.
https://doi.org/10.3168/jds.S0022-0302(05)73133-7.
Butler, W. R. (1998). Review: Effect of protein nutrition on ovarian and uterine physiology in dairy cattle. Journal of Dairy Science, 81, 2533-2539. https://doi.org/10.1016/S0378-4320(00)00076-2.
Cheng, Zh., Oguejiofor, C. F., Swangchan-Uthai, T., Carr, S., & Wathes, D. C. (2015). Relationships between circulating urea concentrations and endometrial function in postpartum dairy cows. Animal 5, 748-773. http://doi.org: 10.3390/ani5030382.
Clayton, E. H., Wilkins, J. F., & Friend, M. A. (2016). Increased proportion of female lambs by feeding Border Leicester × Merino ewes a diet high in omega-6 fatty acids around mating. Animal Production Science, 56, 824-833. https://doi.org/10.1071/AN14714.
Clayton, E. H., Friend, M. A., & Wilkins, J. F. (2017). Intergenerational effects of omega-6 fatty acids. 1. The reproductive rate of Border Leicester × Merino ewes is influenced by the diet fed to their dams around conception. Animal Production Science 57, 51-59. https://doi.org/10.1071/AN15127.
Daghigh kia, H., Ahmad Fazel, A., & Hossein Khani, A. (2016). Different sources of protein effect in the flushing rations on some blood parameters and the reproductive performance of Ghezel sheep. Iranian Journal of Applied Animal Science, 6, 629-638.
Elrod, C. C., & Butler, W. R. (1993). Reduction of fertility and alteration of uterine pH in heifers fed excess ruminally degradable protein. Animal Science, 71, 694-701.
https://doi.org/10.2527/1993.713694x.
Emadi, S., Rezaei, A., Bolourchi, M., Hovareshti, P., & Akbarinejad, V. (2014). Administration of estradiol benzoate before insemination could skew secondary sex ratio toward males in Holstein dairy cows. Domestic Animal Endocrinology, 48, 110-118. https://doi.org/10.1016/j.domaniend.2014.03.001.
Folch, J., Lees, M., Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226 (1),497-509.
Gharagozlou, F., Youssefi, R., & Akbarinejad, V. (2016). Effects of diets supplemented by fish oil on sex ratio of pups in bitch. Veterinary Research, Forum 2, 105-110.
Green, M. P., Spate, L. D., Parks, T. E., Kimura, K., Murphy, C. N., Williams, J. E., Kerley, M. S., Green, J. A., Keisler, D. H., & Roberts, R. M. (2008). Nutritional skewing of conceptus sex in sheep: effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA). Reproductive Biology and Endocrinology, 6, 21-31. https://doi.org/10.1186/1477-7827-6-21.
Gulliver, C. E., Friend, M. A., King, B. J., & Clayton, E. H. (2012). The role of omega-3 polyunsaturated fatty acids in reproduction of sheep and cattle. Animal Production Science, 31, 9-22. https://doi.org 10.1016/j.anireprosci.2012.02.002
Gulliver, C., Friend, M., King, B., Wilkins, J., & Clayton, E. (2013). A higher proportion of female lambs when ewes were fed oats and cottonseed meal prior to and following conception. Animal Production Science, 53, 464-471. https://doi.org/10.1071/AN12279
Hammon, D. S., Holyoak, G. R., & Dhiman, T. R. (2005). Association between blood plasma urea nitrogen levels and reproductive fluid urea nitrogen and ammonia concentrations in early lactation dairy cows. Animal Reproduction Science, 86, 195-204. https://doi.org/10.1016/j.anireprosci.2004.08.003.
Helle, S., Laaksonen, T., Adamsson, A., Paranko, J., and Huitu, O. Female field voles with high testosterone and glucose levels produce male-biased litters. Animal Behaviour, 75, 1031-1039. https://doi.org/10.1016/j.anbehav.2007.08.015.
Iranian Council of Animal Care (1995). Guide to the care and use of experimental animals, Isfahan University of Technology, Isfahan, Iran.
James, W. H. (1996). Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. Journal of Theoretical Biology, 198, 3-15. https://doi.org/10.1006/jtbi.1996.0102.
Kimura, K., Spate, L. D., Green, M. P., & Roberts, R. M. (2005). Effects of D-glucose concentration, D-fructose, and inhibitors of enzymes of the pentose phosphate pathway on the development and sex ratio of bovine blastocysts. Molecular Reproduction and Development, 72, 201-207. https://doi.org/ 10.1002/mrd.20342
Mathews, F., Johnson, P. J., & Neil, A. (2008). You are what your mother eats: Evidence for maternal preconception diet influencing foetal sex in humans. Proceeding of the Royal Society B, 275, 1661-1668. https://doi.org/ 10.1098/rspb.2008.0105
Mirzaei Alamouti, H., Mohammadi, Z., Shahir, M. H., Vazirigohar, M., & Mansouryar, M. (2018). Effects of short-term feeding of different sources of fatty acids in pre-mating diets on reproductive performance and blood metabolites of fat-tailed Iranian Afshari ewes. Theriogenology, 113, 85-91.
https://doi.org/10.1016/j.theriogenology.2018.02.007
Navara, K. J. (2018). Choosing sexes: Mechanisms and adaptive patterns of sex allocation in vertebrates. Switzerland: Springer Publication.
https://doi.org/10.1007/978-3-319-71271-0
National Research Council (NRC). (2007). Nutrient requirements of small ruminants, sheep, goats, cervids, and new world camelids. USA, Washington DC: National Academy Press.
Rhoads, M. L., Gilbert, R. O., Lucy, M. C., & Butler, W. R. (2004). Effects of urea infusion on the uterine
luminal environment of dairy cows. Journal of Dairy Science, 87, 2896-2901.
https://doi.org/10.3168/jds.S0022-0302(04)73420-7
Robertson, S. M., Clayton, E. H., King, B. J., Knott, S., Morgan, B., & Friend, M. A. (2014). Lucerne pasture ad libitum after day 7 post insemination may increase embryo mortality in ewes. Proceedings of the Australian Society of Animal Production, 30, 66.
Rosenfeld, C. S., & Roberts, R. M. (2004). Maternal diet and other factors affecting offspring sex ratio: A review. Biological Reproduction, 71, 1063-1070. https://doi.org/10.1095/biolreprod.104.030890
Sturmey, R. G., Bermejo-Alvarez, P., Gutierrez-Adan, A., Rizos, D., Leese, H. J., & Lonergan, P. (2010). Amino acid metabolism of bovine blastocysts: A biomarker of sex and viability. Molecular Reproduction and Development, 77, 285-296. https://doi.org/10.1002/mrd.21145
Tatum, J. D., DeWalt, M. S., LeValley, S. B., Savell, J. W., & Williams, F. L. (1998). Relationship of feeder lamb frame size to feedlot gain and carcass yield and quality grades. Animal Science, 76, 435-440. https://doi.org/10.2527/1998.762435x
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3593-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.