Effects of sowing rate on morphological and yield-related traits in camelina: Determination of optimal sowing date

Document Type : Research Paper

Authors

Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

Proper timing in planning for sowing dates and optimization of plant density are crucial for maximizing camelina (Camelina sativa (L.) Crantz) yields with great potential for enhancing food security and animal feed. This study aimed to evaluate how planting time and density affect camelina seed yield in southern Iran. A two-year field study was performed at Shiraz University, School of Agriculture, Iran, to examine five different sowing dates (10 November, 10 December, 10 January, 10 February, and 10 March) and eight sowing densities (3, 4, 5, 6, 7, 8, 9, and 10 kg ha-1). The results demonstrated significant impacts of sowing date and density on seed yield. This study showed that 10 January and 10 February were optimal sowing dates (687.9 ± 30 and 731.3 ± 40 kg ha-1, respectively), and the highest seed yield was obtained at a sowing density of 6 kg ha-1 (686.4 ± 30 kg ha-1). Plant height was influenced by the sowing date, while seed yield and yield components were affected by both the sowing date and density. This research highlights the importance of selecting optimal sowing dates and densities to maximize camelina yield in Fars Province, Iran. Further studies are necessary to investigate how these factors affect different camelina varieties in various regions of Iran, ultimately leading to the development of tailored cultivation practices for optimal yield and sustainability in camelina production.

Keywords

Main Subjects


Article Title [Persian]

اثر تراکم کاشت بر صفات مورفولوژیکی و عملکرد کاملینا: تعیین تاریخ کشت بهینه

Authors [Persian]

  • محمد ضیایی
  • روح اله نادری
  • بهرام حیدری
  • محسن عدالت
بخش ژنتیک و تولیدات گیاهی دانشکده کشاورزی دانشگاه شیراز، شیراز، ج. ا. ایران.
Abstract [Persian]

 
زمان‌بندی مناسب تاریخ کاشت و بهینه‌سازی تراکم بوته برای به حداکثر رساندن عملکرد گیاه کاملینا (Camelina sativa (L.) Crantz) به‌عنوان یک دانه روغنی با پتانسیل بالایی برای افزایش امنیت غذا و خوراک دام در ایران بسیار مهم است. این مطالعه با هدف بررسی تأثیر زمان و تراکم کاشت بر عملکرد دانه کاملینا در جنوب ایران انجام شد. یک مطالعه مزرعه ای دو ساله در دانشکده کشاورزی، دانشگاه شیراز، ایران انجام شد. تیمارها شامل پنج تاریخ کاشت مختلف (آبان، آذر، دی، بهمن، اسفند) و هشت تراکم کاشت (3، 4، 5، 6، 7، 8، 9 و 10 کیلوگرم در هکتار) بود. نتایج حاکی از تأثیر معنی دار تاریخ کاشت و تراکم بر عملکرد دانه بود. در این مطالعه دی ماه و بهمن ماه تاریخ کاشت بهینه بودند که بیشترین عملکرد دانه در تراکم کاشت 6 کیلوگرم در هکتار به دست آمد. ارتفاع بوته تنها تحت تأثیر تاریخ کاشت قرار گرفت، در حالی که عملکرد دانه و اجزای عملکرد تحت تأثیر تاریخ کاشت و تراکم قرار گرفتند. این تحقیق اهمیت انتخاب تاریخ و تراکم بهینه کاشت را برای به حداکثر رساندن عملکرد گیاه کاملینا در جنوب ایران نشان می دهد. مطالعات بیشتر برای بررسی چگونگی تأثیر این عوامل بر ارقام مختلف کاملینا در مناطق مختلف ایران ضروری است که در نهایت منجر به توسعه روش‌های کشت مناسب برای عملکرد بهینه و پایداری در تولید کاملینا می‌شود.

Keywords [Persian]

  • تولیدات گیاهی
  • دانه های روغنی
  • گیاهان با نیاز پایین
Ahmadvandi, H., Zeinodini, A., Ghobadi, R., Gore, M. (2021). Benefits of adding camelina to rainfed crop rotation in Iran: A crop with high drought tolerance. Agrotechniques in Industrial Crops, 1(2), 91-96. https://doi.org/10.22126/atic.2021.6410.1007
Alam, M. Z., Bell, R. W., Biswas, W. K., & Aditya, T. L. (2014). Response of wheat to sowing date and fertilizer management in Bangladesh. Field Crops Research, 163, 1–13. https://doi.org/10.1016%2Fj.sjbs.2021.06.074
Anderson, J., Wall, N., King, L., Van Sanford, J., Ashley, R., Miller, D., & Boerma, R. (2019). Agronomic evaluation of camelina genotypes in the southeastern United States. Agronomy Journal, 110(1), 1–8. https://doi.org/10.3390/agronomy10121929
Baird, J., Mundel, H. H., & Schmitthenner, A. F. (2009). Seed yield and yield components of lentil as influenced by row spacing, seed rate, and cultivar. Canadian Journal of Plant Science, 89(4), 755–763. https://doi.org/10.59797/ija.v50i4.5135
Berti, M. T., Wilckens, M., Martínez, H. P., & Fischer, J. (2015). Agronomic performance of camelina in the northern Great Plains. Industrial Crops and Products, 65, 321–327. https://doi.org/10.1016/j.indcrop.2017.06.022
Berti, M., Gesch, H., & Eynck, J. (2016). Camelina. In J. Vollmann & I. Rajcan (Eds.), Oil Crops (pp:1-30). New York: Springer.
Borzoo, S., Mohsenzadeh, S., & Kahrizi, D. (2021). Water-deficit stress and genotype variation induced alteration in seed characteristics of Camelina sativa. Rhizosphere, 20, 100427. https://doi.org/10.1016/j.rhisph.2021.100427
Brevedan, R. E., & Egli, D. B. (2003). Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Science, 43(6), 2083–2088.
https://doi.org/10.2135/cropsci2003.2083
Caliskan, S., Caliskan, M. E., Arslan, M., et al. (2008). Effects of sowing date and growth duration on growth and yield of groundnut in a Mediterranean-type environment in Turkey. Field Crops Research, 105(1-2), 131-140. https://doi.org/10.1016/j.fcr.2007.08.007
De-Souza, P. I., Cordenunsi, B. R., & Oliveira do Nascimento, J. R. (1997). Effects of water stress on the growth, water relations and solute accumulation in two genotypes of sugar cane. Brazilian Journal of Plant Physiology, 9(2), 115–123. https://doi.org/10.3389%2Ffpls.2017.01077
Ding, Y., Wang, X., Liu, H., Du, D., & Wen, D. (2016). Dynamic responses of wheat yield to climate change and technological advancement in Northeast China. Journal of Integrative Agriculture, 15(5), 1136–1148.
http://doi.org/dx.doi.org/10.1155/2019/2767018
Fang, Y., Wang, X., Wang, Z., Zhao, X., Wu, H., & Zhang, X. (2010). Effects of seeding rate and planting pattern on soil water and spring wheat yield on the Loess Plateau of China. Field Crops Research, 116(1-2), 49–57. https://doi.org/10.1016/j.agwat.2023.108572
Gallagher, M. K., & Campbell, D. R. (2021). Water availability and plant reproductive allocation. American Journal of Botany, 108(2), 365–374. https://doi.org/10.1111/nph.14602
Gesch, R. W. (2014). Camelina response to seeding date and rate. Agronomy Journal, 106, 191–198. https://doi.org/dx.doi.org/10.2134/agronj2015.0153
Gesch, R. W., & Archer, D. W. (2013). Double cropping camelina with spring wheat and soybean in the northern Corn Belt. Agronomy Journal, 105, 699–706.
https://doi.org/dx.doi.org/10.1016/j.indcrop.2012.05.023
Gesch, R. W., & Cermak, S. (2011). Sowing date and tillage effects on fall-seeded camelina in the northern Corn Belt. Agron Journal, 103, 980–987.
Gesch, R. W., Archer, D. W., Oplinger, E. S., & Forcella, F. (2018). Seed yield, yield components, and oil content of winter camelina grown across five locations in North America. Industrial Crops and Products, 111, 440–449.
https://doi.org/10.1016/j.indcrop.2018.08.025
Gesch, R. W., Cermak, S. C., & Forcella, F. (2017). Dry matter accumulation and seed yield of spring camelina as influenced by plant density and planting date in the northern Great Plains. Industrial Crops and Products, 109, 87–95. https://doi.org/dx.doi.org/10.1016/j.fcr.2012.02.019
Gesch, R. W., Perrin, R., & Vetch, J. (2017). Camelina seeding rate and planting date effects on stand establishment and seed yield in the northern Great Plains. Agronomy Journal, 109, 1-10. https://doi.org/dx.doi.org/10.1016/j.fcr.2012.02.019
Gordeyeva, E. Y., Semenov, S. M., Belova, N. A., Lebedeva, I. N., & Schindel, M. G. (2024). Duration of phenological phases and productivity of spring wheat in the steppe zone of the Southern Urals. Russian Journal of Agricultural and Socio-Economic Sciences, 4(100), 10–22.
https://doi.org/10.1093%2Fjxb%2Ferac144
Gulluoglu, L., Hatipoglu, R., Derya, G., & Zeynep, H. (2018). Investigating the relationship between pod number and seed yield in soybean. The Journal of Animal and Plant Sciences, 28(4), 1024-1030. http://dx.doi.org/10.2135/cropsci2012.11.0663
Hazrati, S., Rostami, N., Mohammadi, H., Ebadi, M. T. (2024). Improving the growth parameters, yield, and oil quality of camelina in rainfed farming due to the combined use of biochar and supplementary irrigation. Journal of Agriculture and Food Research, 16, 101160. https://doi.org/10.1016/j.jafr.2024.101160
Hiltbrunner, J., Liedgens, M., Käch, B., & Stamp, P. (2007). Effect of seed rate and sowing date on dry matter and grain yield of common bean grown at different stand densities in a semi-arid environment. European Journal of Agronomy, 26(1), 66–73.
http://dx.doi.org/10.47856/ijaast.2021.v08i3.002
Iboyi, E. A., Nwoke, C., & Jones, P. (2024). Impact of seeding rate on the photosynthetic characteristics and growth of Brassica carinata L. Journal of Crop Improvement, 38(1), 1–15. http://dx.doi.org/10.1080/15427528.2022.2163950
Isidro-Sánchez, J., Cirilo, A. G., & Miralles, D. J. (2017). Durum wheat yield response to plant density: A linear or curvilinear relationship? Crop Science, 57(4), 2114–2123.
http://dx.doi.org/10.1016/j.fcr.2018.12.011
Kim, H. K., Saini, A., & Bassil, H. (2018). Camelina sativa, a Montana specialty oilseed crop. Proceedings of the 11th Annual Montana Nutrition Conference and the 4th Annual Montana Pulse Crop Symposium. Montana State University Extension.
Li, C. J., Shi, X. X., & Yang, J. C. (2012). The relationships between sowing date, weather factors and spring wheat yield in the North China Plain: A modeling approach. European Journal of Agronomy, 43, 90–98. http://dx.doi.org/10.17957/IJAB/15.0459
Liu, C., Xu, Y., Zhao, J., Nie, J., Jiang, Y., Shang, M., Zang, H., Yang, Y., Brown, R. W., & Zeng, Z. (2023). Optimizing sowing date and plant density improve peanut yield by mitigating heat and chilling stress. Agronomy Journal, 115(2), Article e21307. https://doi.org/10.1002/agj2.21307
May, W. E., Lafond, G. P., & Holzapfel, C. B. (2009). Seeding rate effects on oat yield and yield components. Canadian Journal of Plant Science, 89(2), 287–295. http://dx.doi.org/10.4141/CJPS-2014-439
McKenzie, R. H., Cavers, P. B., & Lafond, G. P. (2005). Seeding rate effects on barley yield, yield components, and quality in southern Saskatchewan. Canadian Journal of Plant Science, 85(1), 103-108. http://dx.doi.org/10.4141/P04-152
McVay, K. A., & Khan, B. A. (2011). Optimal seeding rate, planting date, and row spacing for camelina in the Northern Great Plains. Industrial Crops and Products, 33(3), 605-608. http://dx.doi.org/10.1016/j.indcrop.2010.12.008
O’Donovan, J. T., Harker, K. N., Clayton, G. W., Hall, L. M., & McKenzie, R. H. (2012). Influence of seeding rate, seeding date, and location on the agronomic performance of barley. Canadian Journal of Plant Science, 92(3), 501-509. http://dx.doi.org/10.4141/P02-073
Page, E. R., Tollenaar, M., Lee, E. A., Lukens, L., & Swanton, C. J. (2010). Timing, effect, and recovery from intraspecific competition in maize. Agronomy Journal, 102, 1007–1013. https://doi.org/10.2134/agronj2009.0397
Pashtetskiy, V. S., Turina, E. L., Turin, E. N., Cherkashyna, A. V., & Rostova, Y. N. (2021). Formation of agrocenosis Camelina sylvestris in the conditions of the Black Sea region. IOP Conference Series: Earth and Environmental Science, 640, 062018. https://doi.org/10.1088/1755-1315/640/6/062018
Righini, D., Zanetti, F., Martínez-Force, E., Mandrioli, M., Toschi, T. G., & Monti, A. (2019). Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products, 137, https://doi.org/10.1016/j.indcrop.2019.05.009
Urbaniak, S. D., Caldwell, C. D., Zheljazkov, V. D., Lada, R., & Luan, L. (2008). The effect of seeding rate, seeding date, and seeder type on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Canadian Journal of Plant Science, 88(3), 501–508. https://doi.org/10.4141/CJPS07148
Vieira, E. A., Corrêa, L. A., Moreira, M. A., & Paciullo, D. S. (1992). Water stress and soybean productivity. Scientia Agricola, 49(2), 221–230.
Willenborg, C. J., & Johnson, E. N.  (2013) Influence of seeding date and seeding rate on cow cockle, a new medicinal and industrial crop. Industrial Crops and Products, 49, 554-560. https://doi.org/10.1016/j.indcrop.2013.05.028.
Wittenberg, A., Anderson, J. V., & Berti, M. T. (2020). Crop growth and productivity of winter camelina in response to sowing date in the northwestern Corn Belt of the USA. Industrial Crops and Products, 158, 113036. https://doi.org/10.1016/j.indcrop.2020.113036
Zanon, A. J., Streck, N. A., Grassini, (2016). Climate and management factors influence soybean yield potential in a subtropical environment. Agronomy Journal, 108(4), 1447-1454. https://doi.org/10.2134/agronj2015.0535
Zhou, G., Gaiser, T., & Zuo, Q. (2020). Influence of weather conditions on growth and yield formation of a new oilseed crop: A case study on Camelina sativa under different climate conditions. Agronomy, 10(1), 123. https://doi.org/10.3390/agronomy10010123.