Aldoobie, N. F., & Beltagi, M. S. (2013) Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. African Journal of Biotechnology, 12(29), 4614-4622.
Alia, N., Sardar, K., Said, M., Salma, K., Sadia, A., Sadaf, S., & Miklas, S. (2015). Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. International Journal of Environmental Research and Public Health, 12(7), 7400- 16. https://doi.org/10.3390/ijerph120707400.
Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, M. S., & Amin, F. (2018). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): Profitable phytoremediation with biofuel crops. Geology, Ecology, and Landscapes, 2(1), 51-60, https://doi.org/10.1080/24749508.2018.1452464.
Baldi, A., Cecchi, S., Grassi, C., Zanchi, C. A., Orlandini, S., & Napoli, M. (2021). Lead bioaccumulation and translocation in herbaceous plants grown in urban and peri-urban soil and the potential human health risk. Agronomy, 11, 2444.
https://doi.org/10.3390/agronomy11122444.
Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils.
Environmental Pollution,
59 (12), 3269-3282.
https://doi.org/10.1016/j.envpol.2011.07.023.
Bates, L. S., Waldren R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207.
Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17, 21–34. https://doi.org/10.1590/S1677.
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Global Change Biology Bioenergy, 5, 202–214. https://doi.org/10.1111/gcbb.12037.
Biria, M., Moezzi, A. A., & Ameri Khah, H. (2017). Effect of sugarcane bagasse made biochar on maize plant growth, grown in lead and cadmium contaminated soil. Journal of Water and Soil, 31(2), 609-626. https://doi.org/10.22067/JSW.V31I2.55832 (In Persian).
Chellaiah, E. R. (2018). Cadmium bioremediation by Pseudomonas aeruginosa: A mini-review. Applied Water Sconce, 8, 154. https://doi.org/10.1007/s13201-018-0796-5.
Chemerys, V., & Baltrėnaitė-Gedienė, E. (2017). Pine-derived biochar as option for adsorption of Сu, Zn, Cr, Pb, Ni and decreasing of BOD5 in landfill leachate. Mokslas - Lietuvos Ateitis, 9(4), 406-412.
https://doi.org/10.3846/mla.2017.1068.
Chen, Y. X., He, Y. F., Yang, Y., Yu, Y. L., Zheng, S. J., Tian, G. M., Luo, Y. M., & Wong, M. H. (2003). Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere, 50, 781–787. https://doi.org/10.1016/S0045-6535 (02)00219-9.
Chen, Z., Zhang, J., & Huang, L. (2019). Removal of Cd and Pb with biochar made from dairy manure at low temperature. Journal of Integrative Agriculture, 18(1), 201-210. https://doi.org/10.1016/2095-3119(18)61987-2.
Cheng, S. F., & Huang, C. Y. (2006). Influence of cadmium on growth of root vegetable and accumulation of cadmium in the edible root. International Journal of Applied Science and Engineering, 4, 243–252. https://doi.org/10.6703/IJASE.2006.4 (3).243.
Demiral, T., & Turkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environment Express Botany, 53, 247-257. http://dx.doi.org/10.1016/j.envexpbot.2004.03.017.
Dubois, M., K. A., Cilles, J., Hamilton, R., Rebers & Smith, F. (1956). Colorimetric method 11w determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060.
Guo, M., Song, W., & Tian, J. (2020). Biochar facilitated soil remediation, mechanisms and efficacy variations. Frontiers in Environmental Science, https://doi.org/10.3389/fenvs.2020.521512.
Hafeez, A., Pan, T., Tian, J., & Cai, K. (2022). Modified biochars and their effects on soil quality: A review. Environments, 9, 60.
https://doi.org/10.3390/environments9050060.
Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., & Rasul, F. (2017). Effect of biochar application on seed germination and seedling growth of Glycine max under drought stress. Pakistan Journal of Botany, 49(51), 7–13. http://www.pakbs.org/pjbot/papers/1496524350.
Hayyat, A., Javed, M., & Rasheed, I. (2016). Role of biochar in remediating heavy metals in soil. In: Phytoremediation. https://doi.org/10.1007/978-3-319-40148-5_14.
Herath, H. M., Arbestain, M. C., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma, 210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016.
Hosseinifard, M., Stefaniak, S., Ghorbani M., Soltani, E., Wojtyla, Ł., & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences, 23, 5186.
https://doi.org/10.3390/ijms23095186.
Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018(9), 1-16.
https://doi.org/10.1155/2018/2568038.
Jalal, F., Akhtar, K., Saeed, S., & Said F. (2024). Biochar as sustainable input for nodulation, yield and quality of mung bean. Journal of Applied Sciences. 11(5), 993. https://doi.org/10.1007/s43994-024-00121-5
Jones Jr, J. B. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC press.
Karami, K., Clemente, R., Moreno-Jimenez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191, 41–48. https://doi.org/10.1016/j.jhazmat.2011.04.025.
Khadem, A., Raiesi, F., Besharati, H., & Khalaj, M. (2021). The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar, 2(4). https://doi.org/ 10.1007/s42773-020-00076-w
Khdair, E. H., Al-Bayaty, A. J., & Sultan, A. M. (2023). Effect of addition cadmium and lead to the soil on some vegetative traits and seed content of protein of mung bean plant (Vigna radiate L.). Journal of Survey in Fisheries Sciences, 10(3), 5298-5306.
Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G., & Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153–159. https://doi.org/10.1016/j.chemosphere.2015.06.041.
Liang, M., Lu, L., He, H., Li, J., Zhu, Z., & Zhu, Y. (2021). Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustainability, 13, 14041. https://doi.org/ 10.3390/su132414041.
Liu, N., Lin, Z. F., Lin, G. Z., Song, L. Y., Chen, S. W., & Mo, H. (2010). Lead and cadmium induced alterations of cellular functions in leaves of Alocasia macrorrhiza L. Ecotoxicology and Environment Safety, 73, 1238–1245. https://doi.org/10.1016/j.ecoenv.2010.06.017.
Liu, X., Zhang, A., & Ji, C. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions, a meta-analysis of literature data. Plant and Soil, 373, 583–594. https://doi.org/ 10.1007/s11104-013-1806-x.
Mondal, N. K., Das, C., & Datta, J. K. (2015). Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environmental Monitoring and Assessment, 187 (5), 4484. https://doi.org/10.1007/s10661-015-4484-8
Nigam, N., Khare, P., & Yadav, V. (2019). Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. Ecotoxicology and Environmental Safety, 172, 411-422. https://doi.org/10.1016/j.ecoenv.2019.02.006
Osooli, H., Karimi, A., Shirani, H., & Tabatabaei, S.H. (2022). Investigation of biochar effect on some physical properties of soil, crop water stress index and wheat yield in sandy loam soil. Iranian Journal of Soil and Water Research, 53(3), 471-483. https://doi.org/ 10.22059/IJSWR.2022.337513.669188
Park J. H., Choppala, G., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. (2013). Comparative sorption of Pb and Cd by biochar and its implication for metal immobilization in soils. Water, Air and Soil Pollution, 224 (12), 1-12. https://doi.org/10.1007/s11270-013-1711-1.
Raffa, C. M., Chiampo, F., & Shanthakumar, S. (2021). Remediation of metal/metalloid-polluted soils: A short review. Applied Science, 11, 4134. https://doi.org/10.3390/ app11094134.
Sayyadian, K., Moezziet, A., & Gholami, A. (2018). Effect of biochar on cadmium, nickel and lead uptake and translocation in maize irrigated with heavy metal contaminated water. Applied Ecology and Environmental Research, 17(1), 969-982. http://dx.doi.org/10.15666/aeer/1701_969982
Sheoran, I. S., Singal, H. R., & Singh, R. (1990). Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeon pea (Cajanus cajan L.). Photosynthesis Research, 23(3), 345-351. https://doi.org/10.1007/BF00034865.
Tang, H., Wang, S., & Liu, Y. (2022). Biochar: A promising soil amendment to mitigate heavy metals toxicity in plants. Notulae Botanicae Horti Agrobotanici, 50(3), 12778. https://doi.org/10.15835/nbha50312778
Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-9. https://doi.org/10.1007/s00726-008-0061-6.
Younis, U., Qayyum, M. F., Shah, M. H. R., Danish, S., Shahzad, A. N., Malik, S. A., & Mahmood, S. (2015). Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar-amended sewage-irrigated contaminated soil. Journal of Plant Nutrition and Soil Science, 178, 209–217. https://doi.org/10.1002/jpln.201400325.
Zhang, S., Quan, L., & Zhu, Y. (2020). Differential effects of three amendments on the immobilization of cadmium and lead for Triticum aestivum grown on polluted soil. Environmental Science and Pollution Research, 27(32), 40434-40442. https://doi.org/10.1007/s11356-020-10079-6
Zulfiqar, U., Ayub, A. M., Hussain, S., Waraich, E. A., El-Esawi, M. A., Ishfaq, M., Ahmad, M., Ali, N., & Maqsood, M. F. (2021). Cadmium toxicity in plants: Recent progress on morpho-physiological effects and remediation strategies. Journal of Soil Science and Plant Nutrition, 22, 212–269.