Ahmed, I. M., Nadira, U. A., Bibi, N., Cao, F., He, X., Zhang, G., & Wu, F. (2015). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley.
Environmental and Experimental Botany, 111, 1-12. doi:
10.1016/j.envexpbot.2014.10.003
Aleosfoor, M., Zahediannezhad, M., Minaei, K., Fekrat, L., & Razi, H. (2023). Effects of drought stress and plant cultivar type on demographic characteristics of the rose-grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae). Bulletin of Entomological Research, 113(2), 196-211. doi:10.1017/S0007485322000463
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., . . . & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.
Forest Ecology and Management, 259(4), 660-684. doi:
10.1016/j.foreco.2009.09.001
Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., . . . & Zeppel, M. (2015). Tree mortality from drought, insects, and their interactions in a changing climate.
New Phytologist, 208(3), 674-683. doi:
10.1111/nph.13477
Aslam, T. J., Johnson, S. N., & Karley, A. J. (2013). Plant‐mediated effects of drought on aphid population structure and parasitoid attack.
Journal of Applied Entomology, 137(1-2), 136-145. doi:
10.1111/j.1439-0418.2012.01747.x
Banfield-Zanin, J. A., & Leather, S. R. (2015). Drought intensity and frequency have contrasting effects on development time and survival of the green spruce aphid.
Agricultural and Forest Entomology, 17(3), 309-316. doi:
10.1111/afe.12109
Banfield-Zanin, J. A., & Leather, S. R. (2016). Prey-mediated effects of drought on the consumption rates of coccinellid predators of
Elatobium abietinum.
Insects, 7(4), 49. doi:
10.3390/insects7040049
Bao, Y., Wang, F., Tong, S., Na, L., Han, A., Zhang, J., ... & Zhang, Q. (2019). Effect of drought on outbreaks of major forest pests, pine caterpillars (
Dendrolimus spp.), in Shandong Province, China.
Forests, 10(3), 264. doi:
10.3390/f10030264
Bowdish, T. I., & Stiling, P. (1998). The influence of salt and nitrogen on herbivore abundance: Direct and indirect effects. Oecologia, 113(3), 400-405. doi:10.1007/s004420050392
Cabrera, H. M., Argandoña, V. H., Zúñiga, G. E., & Corcuera, L. J. (1995). Effect of infestation by aphids on the water status of barley and insect development.
Phytochemistry, 40(4), 1083-1088. doi:
10.1016/0031-9422(95)00325-2
Cañedo-Argüelles, M., Kefford, B., & Schäfer, R. (2019). Salt in freshwaters: Causes, effects and prospects- introduction to the theme issue. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1764), 20180002. doi:10.1098/rstb.2018.0002
Carbonell, J. A., Bilton, D. T., Calosi, P., Millán, A., Stewart, A., & Velasco, J. (2017). Metabolic and reproductive plasticity of core and marginal populations of the eurythermic saline water bug
Sigara selecta (Hemiptera: Corixidae) in a climate change context.
Journal of Insect Physiology, 98, 59-66. doi:
10.1016/j.jinsphys.2016.11.015
Dale, A. G., & Frank, S. D. (2017). Warming and drought combine to increase pest insect fitness on urban trees. PloS one, 12(3), e0173844.
Dang, Z., Li, Y., Gao, Z., & Pan, W. (2009). Influence of soil moisture on growth and development of Holotrichia oblita. Chinese Bulletin of Entomology, 46(1), 135-138.
Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44(8), 815-826. doi:10.1007/s13280-015-0681-5
Descamps, C., Quinet, M., & Jacquemart, A.-L. (2021). The effects of drought on plant–pollinator interactions: What to expect?
Environmental and Experimental Botany, 182, 104297. doi:
10.1016/j.envexpbot.2020.104297
Dong, Y. C., Wang, Z. J., Bu, R. Y., Dai, H. J., Zhou, L. J., Han, P., Amiens-Desneux, E., Bearez, P., & Desneux, N. (2020). Water and salt stresses do not trigger bottom-up effects on plant-mediated indirect interactions between a leaf chewer and a sap-feeder. Journal of Pest Science, 93(4), 1267–1280.
Douglas, A. (2006). Phloem-sap feeding by animals: Problems and solutions. Journal of Experimental Botany, 57(4), 747-754. doi: 10.1093/jxb/erj067
Elnitsky, M. A., Benoit, J. B., Denlinger, D. L., & Lee, R. E. (2008). Desiccation tolerance and drought acclimation in the Antarctic collembolan
Cryptopygus antarcticus.
Journal of Insect Physiology, 54(10), 1432-1439. doi:
10.1016/j.jinsphys.2008.08.004
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant Drought Stress: Effects, Mechanisms and Management. In E., Lichtfouse, M., Navarrete, P., Debaeke, S., Véronique, & C., Alberola (Eds.), Sustainable Agriculture (pp. 153-188). Dordrecht: Springer Netherlands.
Filazzola, A., Matter, S. F., & MacIvor, J. S. (2021). The direct and indirect effects of extreme climate events on insects.
Science of The Total Environment, 769, 145161. doi:
10.1016/j.scitotenv.2021.145161
Forieri, I., Hildebrandt, U., & Rostás, M. (2016). Salinity stress effects on direct and indirect defense metabolites in maize.
Environmental and Experimental Botany, 122, 68-77. doi:
10.1016/j.envexpbot.2015.09.007
Forister, M. L., Fordyce, J. A., Nice, C. C., Thorne, J. H., Waetjen, D. P., & Shapiro, A. M. (2018). Impacts of a millennium drought on butterfly faunal dynamics.
Climate Change Responses, 5(1), 3. doi:
10.1186/s40665-018-0039-x
Gely, C., Laurance, S. G. W., & Stork, N. E. (2020). How do herbivorous insects respond to drought stress in trees?
Biological Reviews, 95(2), 434-448. doi:
10.1111/brv.12571
Guohong, Z., Guangwen, L., Mengyi, M., & Ling, Z. (2001). Effects of temperature and humidity on development of experimental cotton leafworm population. Journal of South China Agricultural University, 22(3), 29-32.
Han, P., Wang, Z.-j., Lavoir, A.-V., Michel, T., Seassau, A., Zheng, W.-y., Niu, C.Y., & Desneux, N. (2016). Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Scientific Reports, 6(1), 32403. doi:10.1038/srep32403
Hoffmann, A. A., Chown, S. L., & Clusella-Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: How constrained are they?
Functional Ecology, 27(4), 934-949. doi:
10.1111/j.1365-2435.2012.02036.x
Huberty, A. F., & Denno, R. F. (2004). Plant water stress and its consequences for herbivorous insects: A new synthesis.
Ecology, 85(5), 1383-1398. doi:
10.1890/03-0352
Kansman, J. T., Basu, S., Casteel, C. L., Crowder, D. W., Lee, B. W., Nihranz, C. T., & Finke, D. L. (2022). Plant water stress reduces aphid performance: exploring mechanisms driven by water stress intensity. Frontiers in Ecology and Evolution, 10. doi: 10.3389/fevo.2022.846908
Khan, M. A. M., Ulrichs, C., & Mewis, I. (2010). Influence of water stress on the glucosinolate profile of
Brassica oleracea var.
italica and the performance of
Brevicoryne brassicae and
Myzus persicae.
Entomologia Experimentalis et Applicata, 137(3), 229-236. doi:
10.1111/j.1570-7458.2010.01059.x
Klockmann, M., & Fischer, K. (2017). Effects of temperature and drought on early life stages in three species of butterflies: Mortality of early life stages as a key determinant of vulnerability to climate change?
Ecology and Evolution, 7(24), 10871-10879. doi:
10.1002/ece3.3588
Kolb, T. E., Fettig, C. J., Ayres, M. P., Bentz, B. J., Hicke, J. A., Mathiasen, R., . . . & Weed, A. S. (2016). Observed and anticipated impacts of drought on forest insects and diseases in the United States.
Forest Ecology and Management, 380, 321-334. doi:
10.1016/j.foreco.2016.04.051
Lin, P.-A., Paudel, S., Afzal, A., Shedd, N. L., & Felton, G. W. (2021). Changes in tolerance and resistance of a plant to insect herbivores under variable water availability.
Environmental and Experimental Botany, 183, 104334. doi:
10.1016/j.envexpbot.2020.104334
Liu, X., Yang, H., Niu, F., Sun, H., & Li, C. (2023). Impact of water stress on the demographic traits and population projection of Colorado potato beetle. Frontiers in Physiology, 14. doi:10.3389/fphys.2023.1148129
Marček, T., Hamow, K. Á., Végh. B., Janda, T., & Darko, E. (2019) Metabolic response to drought in six winter wheat genotypes. PloS one 14(2), e0212411.
doi:10.1371/journal.pone.0212411
Marques, S. C., Primo, A. L., Martinho, F., Azeiteiro, U. M., & Pardal, M. (2014). Shifts in estuarine zooplankton variability following extreme climate events: A comparison between drought and regular years.
Marine Ecology Progress Series, 499, 65-76. doi:
10.3354/meps10635
Mattson, W. J., & Haack, R. A. (1987). The role of drought in outbreaks of plant-eating insects.
Bio Science, 37(2), 110–118. doi:
10.2307/1310365
McDermott Long, O., Warren, R., Price, J., Brereton, T. M., Botham, M. S., & Franco, A. M. A. (2017). Sensitivity of UK butterflies to local climatic extremes: Which life stages are most at risk?
Journal of Animal Ecology, 86(1), 108-116. doi:
10.1111/1365-2656.12594
Muilenburg, V. L., & Herms, D. A. (2012). A review of bronze birch borer (Coleoptera: Buprestidae) life history, ecology, and management. Environmental Entomology, 41(6), 1372-1385. doi:10.1603/en12238
Müller, M., Olsson, P. O., Eklundh, L., Jamali, S., & Ardö, J. (2022). Features predisposing forest to bark beetle outbreaks and their dynamics during drought.
Forest Ecology and Management, 523, 120480. doi:
10.1016/j.foreco.2022.120480
Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant. 59.032607.092911
Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P., Hietz, P., Pennerstorfer, J., Rosner, S., Kikuta, S., Schume, H, & Schopf, A. (2015). Do water-limiting conditions predispose Norway spruce to bark beetle attack?
New Phytologist, 205(3), 1128-1141. doi:
10.1111/nph.13166
Netherer, S., Panassiti, B., Pennerstorfer, J., & Matthews, B. (2019). Acute drought is an important driver of bark beetle infestation in Austrian Norway spruce stands.
Frontiers in Forests and Global Change, 2, 39. doi:
10.3389/ffgc.2019.00039
Pineda, A., Pangesti, N., Soler, R., Dam, N. M. v., Loon, J. J. A. v., & Dicke, M. (2016). Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with, but not explained by an increase in herbivore-induced indole glucosinolates.
Environmental and Experimental Botany, 123, 88-97. doi:
10.1016/j.envexpbot.2015.11.007
Polack, L. A., Pereyra, P. C., & Sarandón, S. J. (2011). Effects of plant stress and habitat manipulation on aphid control in greenhouse sweet peppers.
Journal of Sustainable Agriculture, 35(7), 699-725. doi:
10.1080/10440046.2011.606489
Quais, M. K., Ansari, N. A., Wang, G.-Y., Zhou, W.-W., & Zhu, Z.-R. (2019). Host Plant salinity stress affects the development and population parameters of Nilaparvata lugens (Hemiptera: Delphacidae). Environmental Entomology, 48(5), 1149-1161. doi:10.1093/ee/nvz084
Price, P. W. (1991). Plant vigor and herbivore attack. Oikos, 62,244–251.
Rad, F., Aleosfoor, M., Fekrat, L., & Minaei, K. (2023). Water stress decreases the demographic performance of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on tomato. Arthropod-Plant Interactions. doi:10.1007/s11829-023-09989-2
Rad, F., Aleosfoor, M., Fekrat, L., Minaei, K., Etemadi, M., Afsharifar, A. R., & Eshghi, S. (2024). Life-history parameters of the western flower thrips,
Frankliniella occidentalis, are affected by host plant salinity stress.
Entomologia Experimentalis et Applicata, 172(1), 15-26. doi:
10.1111/eea.13378
Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R., & Bommarco, R. (2021). Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved.
Global Change Biology, 27(1), 71-83. doi:
10.1111/gcb.15386
Renault, S., Wolfe, S., Markham, J., & Avila-Sakar, G. (2016). Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant. AoB PLANTS, 8, plw028. doi:10.1093/aobpla/plw028
Sharma, H. C. (2014). Climate change effects on insects: Implications for crop protection and food security. Journal of Crop Improvement, 28(2), 229-259. doi:10.1080/15427528.2014.881205
Sharma, H. C., Srivastava, C. P., Durairaj, C., & Gowda, C. L. L. (2010). Pest management in grain legumes and climate change. In S. S. Yadav & R. Redden (Eds.), Climate change and management of cool season grain legume crops (pp. 115-139). Dordrecht: Springer Netherlands.
Shehzad, M., Gulzar, A., Staley, J. T., & Tariq, M. (2021). The effects of drought stress and type of fertiliser on generalist and specialist herbivores and their natural enemies. Annals of Applied Biology, 178(2), 377-386.
Sienkiewicz-Paderewska, D., Dmuchowski, W., Baczewska, A. H., Brągoszewska, P., & Gozdowski, D. (2017). The effect of salt stress on lime aphid abundance on Crimean linden (
Tilia ‘Euchlora’) leaves.
Urban Forestry & Urban Greening, 21, 74-79. doi:
10.1016/j.ufug.2016.11.010
Silver, S., & Donini, A. (2021). Physiological responses of freshwater insects to salinity: Molecular, cellular, and organ-level studies.
Journal of Experimental Biology, 224(20), jeb222190
Soman, P., Nwanze, K. F., Laryea, K. B., Butler, D. R., & Reddy, Y. V. R. (1994). Leaf surface wetness in sorghum and resistance to shoot fly, Atherigona soccata: Role of soil and plant water potentials. Annals of Applied Biology, 124(1), 97-108.
Timms, J. E., Oliver, T. H., Straw, N. A., & Leather, S. R. (2008). The effects of host plant on the coccinellid functional response: Is the conifer specialist
Aphidecta obliterata (L.) (Coleoptera: Coccinellidae) better adapted to spruce than the generalist
Adalia bipunctata (L.) (Coleoptera: Coccinellidae)?
Biological Control, 47(3), 273-281. doi:
10.1016/j.biocontrol.2008.08.009
Van Bael, S. A., Aiello, A., Valderrama, A., Medianero, E., Samaniego, M., & Wright, S. J. (2004). General herbivore outbreak following an El Nino-related drought in a lowland Panamanian forest. Journal of Tropical Ecology, 20(6), 625-633. doi:10.1017/S0266467404001725
Verdugo, J. A., Sauge, M.-H., Lacroze, J.-P., Francis, F., & Ramirez, C. C. (2015). Drought-stress and plant resistance affect herbivore performance and proteome: the case of the green peach aphid
Myzus persicae (Hemiptera: Aphididae).
Physiological Entomology, 40(4), 265-276. doi:
10.1111/phen.12111
Weldegergis, B. T., Zhu, F., Poelman, E. H., & Dicke, M. (2015). Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids. Oecologia, 177(3), 701-713. doi:10.1007/s00442-014-3129-x
Wotherspoon, K., Wardlaw, T., Bashford, R., & Lawson, S. (2014). Relationships between annual rainfall, damage symptoms and insect borer populations in mid-rotation Eucalyptus nitens and Eucalyptus globulus plantations in Tasmania: Can static traps be used as an early warning device? Australian Forestry, 77(1), 15-24. doi:10.1080/00049158.2013.871090