Abdul Raoof, K. M., Siddiqui, M. B. (2012). Allelopathic effect of aqueous extracts of different parts of Tinospora cordifolia (Willd.) Miers on some weed plants. Journal of Agricultural Extension and Rural Development. 4 (6), 115-119. doi: 10.5897/JAERD11.069.
Anbarasan R. and Prabhakaran, J. (2015). Allelopathic potential of weed speices Ageratum conyzoides L. and Cleome Viscosa L. on germination and growth of Sesamum indicum L. Kongunadu Research Journal, 2 (2), 114-117.
Anwar, T., Khalid, S., Saeed, M. Mazhar, R., Qureshi, H., & Rashid, M. (2016). Allelopathic interference of leaf powder and aqueous extracts of hostile weed: Parthenium hysterophorus (Astraceae). Science International, 4(3), 86-93.
Alaesaboopathi, L. C. (2010). Allelopathic effects of Centella asiatica aqueous extracts on pearl millet (Pennisetum typhoides L.) and cowpea (Vigna unguiculata Walp.). Pakistan Journal of Weed Science Research, 16(1), 67-71.
Alqarawi, A. A., Hashem, A., Kumar, A., Al-arjani, A. F. (2018). Allelopathic effects of the aqueous extract of Rhazya stricta on growth and metabolism of Salsola villosa.
Plant Biosystems. 152(2), 1-11.
doi.org/10.1080/11263504.2018.1439117
Ashigh, J., & Marquez, E. E. (2010). Dodder (Cuscuta spp.) biology and management. NMSU: New Mexico State University. Guide A-615, Retrieved from http://aces. nmsu.edu/pubs/_a/A615/
Córdoba, E. M., Fernández‐Aparicio, M., González‐Verdejo, C. I., López‐Grau, C., Muñoz‐Muñoz, M. V., & Nadal, S. (2021). Search for resistant genotypes to Cuscuta campestris infection in two legume species, Vicia sativa and Vicia ervilia. Plants, 10, 738. doi: 10.3390/ plants10040738.
Datta, A., Sindel, B. M., Jessop, R. S., Kristiansen, P., & Felton, W. L. (2007). Phytotoxic response and yield of chickpea (
Cicer arietinum L.) genotypes with pre-emergence application of isoxaflutole.
Australian Journal of Experimental Agriculture, 4(7), 1460-1467.
doi: 10.1071/EA07036
Fernández‐Aparicio, M., Delavault, P., & Timko, M. (2020). Management of infection by parasitic weeds: A review. Plants, 9 (9), 1184.
Fernández‐Aparicio, M. Flores, F., & Rubiales, D. (2016). The effect of Orobanche crenata infection severity in faba bean, field pea and grass pea productivity. Front. Plant Science, 7, 1049. doi: 10.3389/fpls.2016.01409
Fernández-Aparicio, M., Soriano, G., Masi, M., Carretero, P., Vilariño-Rodríguez, S., & Cimmino, A. (2022). (4Z)-Lachnophyllum lactone, an acetylenic furanone from Conyza bonariensis, identified for the first time with allelopathic activity against Cuscuta campestris. Agriculture, 12(6), 790. doi:10.3390/agriculture12060790.
Garima, G., & Devi, M. (2017). Allelopathy in agroforestry: A review.
Journal of Pharmacognosy and Phytochemistry, 6 (3), 686-688. Retrieved from:
www.phytoJournal.com
Inderjit, M., & Duke, S. (2003). Ecophysiological aspects of allelopathy.
Planta, 217 (4), 529-539. doi:
10.1007/s00425-003-1054-z
International Seed Testing Association (ISTA). (2009). International rules for seed testing. Annexes. Seed Science and Technology Journal, 49, 86-41.
Kaštier, P. Krasylenko, Y. A. Martincová, M., Panteris, E. Šamaj, J., & Blehová, A. (2018). Cytoskeleton in the parasitic plant Cuscuta during germination and prehaustorium formation. Frontiers in Plant Science, 9, 794. doi: 10.3389/fpls.2018.00794
Khaliq, A., Matloob, A., Khan, M. B., & Tanveer, A. (2013). Differential suppression of rice weeds by allelopathic plant aqueous extracts. Planta Daninha, 31, 21–28.
Khanh, M. A., Marwat, K. B., & Hassan, Z. (2004). Allelopathic potential of some multipurpose trees species (MPTS) on the wheat and some of its associate’s weeds. International Journal of Biology and Biotechnology, 1(3), 275-278.
Khan, M., Hussain, F., Musharaf, S., & Imdadullah, M. (2011). Allelopathic effects of
Rhazya stricta decne on seed germination and seedling growth of maize.
African Journal of Agricultural Reserach, 6(30), 6391-6396. doi:
10.5897/AJAR11.919
Khan Khattak, M., Musharaf, S., Ibrar, M., & Hussain, F. (2015). Allelopathic effects of Rhazya stricta dence on seed germination and seedling growth of Pennisetum typhoides. Proceedings of the 1st International Conference of Technology, Education and Environment. Omoku-Nigeria. International Society for the Scientific Research Publishing.
Khan, R., Baeshen, M. N., Saini, K. S., & Al-Hejin, R. S. B. A. M. (2016). Antibacterial activity of Rhazya stricta non-alkaloid extract against methicillin-resistant staphylococcus aureus. Biological Systems:, 5, 2. doi: 10.4172/2329-6577.1000157
Kulkarni, M. G., Street, R. A., & Van Staden, J. (2007). Germination and seedling growth requirements for propagation of
Dioscorea dregeana (Kunth) Dur. and Schinz—a tuberous medicinal plant.
South African Journal of Botany, 73(1), 131-137.
doi: 10.1016/j.sajb.2006.09.002
Lalbiakdika, I., Lalnunmawia, F., Lalruatsanga, H. (2022). Allelopathic effect of common weeds on germination and seedling growth of rice in wetland paddy fields of Mizoram, India. Plant, Soil and Environment, 68 (8), 393-400.
doi: 10.17221/167/2022-PSE
Lanini, W. T., Cudney, D. W., Miyao, G., & Hembree, K. (2010). How to manage pests, pests in gardens and landscapes, dodder. University of California, Agriculture and Natural Resources, Statewide Integrated Pest Management Program.. Retrieved from:
Mukhtar, I., Mushtaq, S., Haider, M. S., & Khokhar I. (2012). Comparative analysis of autotoxicity in Chenopodium album L., Parthenium hysterophorus L. and Rumex dentatus L. Pakistan Journal of Phytopathology, 24 (2), 85-89.
Panwar, P., & Bhardwaj, S. D. (2005). Handbook of practical forestry. India: Agrobios. 191p.
Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems.
BioScience, 55, 573-582.
https://doi.org/10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2
Qureshi,., & Arshad, M. (2017). Dual Potential of allelotoxins for weed control and improved crop growth: A mini review. Journal of Environmental & Agricultural Sciences, 12, 44-53.
Sandler, H. (2010). Managing
Cuscuta gronovii (swamp dodder) in cranberry requires an integrated approach.
Sustainability, 2, 660-683.
doi: 10.3390/su2020660
Sauerbon, J., Muller-Stover, D., & Hershenhorn, J. (2007). The role of biological control in managing parasitic weeds.
Crop Protection, 26, 246-254.
doi: 10.1016/j.cropro.2005.12.012
Shamsi, S., Dabbagh Mohammdi Nasab, A., & Amini, R. (2018). Grain yield and yield components of chickpea (Cicer arientium L.) under different integrated management of dodder. Journal of Agricultural Science & Sustainable Production, 28 (1), 125-138. (In Persian).
Sin, B., Ozturk, L., Sivri, N., Avci, G.G., Kadioglu, I. 2020. Weed hosts of field dodder (Cuscuta campestris Yunck.) in Northwestern Marmara Region of Turkey. Journal of Aegean Agricultural Research Institute, 30 (1), 80-86. doi: 10.18615/ anadolu.727224.
Singh, H. P., Batish, D. R., Pandher, J. K., & Kohli, R. K. (2003). Assessment of allelopathic properties of
Parthenium hysterophorus residues.
Agriculture, Ecosystems and Environment, 95, 537-541.
doi: 10.1016/S0167-8809(02)00202-5
Shankar, S. R. M., Girish, R., Karthik, N., Rajendran, R., & Mahendran, V. S. (2009). Allelopathic effects of phenolics and terpenoids extracted from Gmelina arborea on germination of Black gram (Vigna mungo L.) and Green gram (Vigna radiate L.). Allelopathy Journal, 23, 323-332.
Soltys, D., Krasuska, U., Bogatek, R., & Gniazdowsk, A. (2013). Allelochemicals as bioherbicides- present and perspectives. In: A.J. Price and J.A. Kelton
, (eds)
Herbicides-current research and case studies in use. (pp. 517-542). London: InTech Publishers.
doi: 10.5772/56185
Vaughn, K. C. (2002). Attachment of the parasitic weed dodder to the host. Protoplasma, 219, 227-237. doi: 10.1007/s007090200024
Westwood, J. H., Charudattan, R., Duke, S. O., Fennimore, S. A., Marrone, P., Slaughter, D. C., Swanton, C., & Zollinger, R. (2018). Weed management in 2050: Perspectives on the future of weed science. Weed Science, 66(3), 275-285. doi: 10.1017/wsc.2017.