Rise of activity of antioxidant enzymes and secondary metabolites under treatment with LED lights in two genotypes of Melissa officinalis

Document Type : Note


1 Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, I. R. Iran

2 Department of Plant Science, Faculty of Science, Shahrekord University & Research Institute of Biotechnology, Shahrekord University, Shahrekord, I. R. Iran

3 Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, I. R. Iran



The innovation of light-emitting diodes (LEDs) has provided a new opportunity to grow plants in controlled environments. In this study, the plantlets of two genotypes of lemon balm were put for seven weeks in an incubator containing LED lamps with red, blue, red + blue (70:30 ratio), and white light spectrum with a light intensity of 300 μmol m-2s-1 and with a light cycle of 16 hours of light and 8 hours darkness and temperature of 25±2°C, and to compare with these conditions; some plantlets were also put in the greenhouse. The plantlets grown in incubators with red + blue LED lamps had higher activity of some antioxidant enzymes including catalase, guaiacol peroxidase, and ascorbate peroxidase, higher amounts of phenolic compounds and the valuable active substance of rosmarinic acid (the latter only in Ilam genotype), and phenylalanine ammonia lyase (PAL) enzyme activity than the plantlets grown in the greenhouse. However, in the Isfahan genotype significant difference in the content of rosmarinic acid was observed only between white LED light with other LED and greenhouse lights. Overall, according to the results of the current study, it can hope to use LED light sources to improve the growth and qualitative and quantitative properties of the medicinal plant, lemon balm, and also to create high-quality plants.


Main Subjects

Article Title [Persian]

افزایش فعالیت آنزیم‌های آنتی اکسیدانی و متابولیت‌های ثانویه تحت تیمار با لامپ‌های LED در دو ژنوتیپ .Melissa officinalis L

Authors [Persian]

  • طیبه احمدی 1
  • لیلا شبانی 2
  • محمد رضا سبزعلیان 3
1 گروه علوم گیاهی، دانشکده علوم، دانشگاه شهرکرد، ج. ا. ایران
2 گروه علوم گیاهی، دانشکده علوم، دانشگاه شهرکرد، ج. ا. ایران و گروه علوم گیاهی، دانشکده علوم و پژوهشکده بیوتکنولوژی، دانشگاه شهرکرد، ج. ا. ایران
3 گروه تولید و‌ ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ج. ا. ایران
Abstract [Persian]

چکیده - نوآوری دیودهای ساطع‌کننده نور (LED) فرصت جدیدی را برای رشد گیاهان در محیط های کنترل شده فراهم کرده است. در مطالعه حاضر، گیاهچه-های دو ژنوتیپ بادرنجبویه به مدت 7 هفته در انکوباتور حاوی لامپ های LED قرمز، آبی، قرمز + آبی (نسبت 70:30) و سفید با شدت نور 300 میکرومول بر مترمربع بر ثانیه و با چرخه نور 16 ساعت روشنایی و 8 ساعت تاریکی و دمای 2±25 درجه سانتیگراد قرار داده شد و برای مقایسه با این شرایط، تعدادی گیاهچه از هر دو ژنوتیپ در گلخانه قرار داده شد. گیاهچه های قرار داده شده در انکوباتور با لامپ های LED قرمز + آبی دارای فعالیت بالاتر آنزیم‌های آنتی‌اکسیدان (کاتالاز، گایاکول پراکسیداز و آسکوربات پراکسیداز)، فعالیت بیشتر آنزیم فنیل آلانین آمونیالیاز(PAL) ، مقادیر بیشتر ترکیبات فنلی، و ماده موثره ارزشمند رزمارینیک اسید (در ژنوتیپ ایلام) نسبت به گیاهچه های کاشته شده در گلخانه بودند. هرچند در ژنوتیپ اصفهان تفاوت معنی‌دار در میزان رزمارینیک اسید فقط بین نور سفید LED با سایر نورهای LED و گلخانه‌ای مشاهده شد. در مجموع، با توجه به نتایج مطالعه حاضر می توان به استفاده از منابع نور LED برای بهبود رشد و خواص کمی و کیفی گیاه دارویی بادرنجبویه (Melissa officinalis)  و همچنین ایجاد گیاهان باکیفیت بالای این گونه امیدوار بود.

Keywords [Persian]

  • آنزیم‌های آنتی‌اکسیدی
  • بادرنجبویه
  • ترکیبات فنلی
  • کیفیت نور
  • نور LED
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105, 121-126.
doi: 10.1016/s0076-6879(84)05016-3
Ahmadi, T., Shabani, L. & Sabzalian, M. R. (2020). LED light mediates phenolic accumulation and enhances antioxidant activity in Melissa officinalis L. under drought stress condition. Protoplamsma, 257(4), 1231-1242. DOI :10.1007/s00709-020-01501-4
Ahmadi, T., Shabani, L. & Sabzalian, M. R. (2021). LED light sources improved the essential oil components and antioxidant activity of two genotypes of lemon balm (Melissa ofcinalis L.). Botanical Studies, 62, 9.
Attridge, T. H. and Smith, H., 1967. A phytochrome-mediated increase in the level of phenylalanine ammonia-lyase in the terminal buds of Pisum sativum. Biochimistry and Biophysics Acta (BBA). 148, 805–807. https://doi.org/10.1016/0304-4165(67)90056-6
Beyer Jr, W. F. & Fridovich, I. (1987). Assaying for superoxide dismutase activity, some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566. https://doi.org/10.1016/0003-2697(87)90489-1
Bian, Zh., Lu, Ch., Grundy, S. & Lu, C. (2018). Uncovering LED light effects on plant growth: New angles and perspectives LED light for improving plant growth, nutrition and energy-use efficiency. Acta Horticulturae, 1227, 491-498.  DOI: 10.17660/ActaHortic.2018.1227.62
Camm, E. & Towers, N. (1973). Phenylalanine ammonia lyase. Phytochemistry, 12: 961-973. https://doi.org/10.1016/0031-9422(73)85001-0
Carmagnol, F., Sinet, P. M., Rapin, J. and Jerome, H. 1981. Glutathione-S-transferase of human red blood cells; assay, values in normal subjects and in two pathological circumstances: hyperbilirubinemia and impaired renal function. Clinica Chimica Acta, 117(2): 209-217. https://doi.org/10.1016/0009-8981(81)90040-1
Close, D.C., McArthur, C. 2002. Rethinking the role of many plant phenolics – protection from photodamage not herbivores? OIKOS 99: 166–172. DOI: 10.1034/j.1600-0706.2002.990117.x
Durst, F. and Mohr, H. (1966). Half-life of phytochrome-induced phenylalanine deaminase in mustard seedlings (Sinapis alba L.).  Nuturwissenschaften 53, 707.
DOI: 10.1007/BF00602735
Foyer, C. H. and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21-25.
Goins, G. D., Yorio, N. C., Sanwo, M. M., & Brown, C. S. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting, Journal of Experimental Botany, 48, 1407-1413. DOI: 10.1093/jxb/48.7.1407
Heydarizadeh, P., Zahedi, M. & Sabzalian, M. R. (2013). The effect of LED light on plant performance, essential oil percentage and antioxidant enzyme activity in peppermint (Mentha piperita). Plant Process and Function, 3(8), 13-24. (In Persian). .
Iwai, M., Ohta, M., Tsuchiya, H. and Suzuki, T. (2010). Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. Journal of Functional Foods 2, 66-70.
Jung, E., Lee, S., Lim, S-H., Ha, S-H., Liu, K-H. and Lee, Ch. (2013). Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Science, 210, 61-69.
Kang, B., Grancher, N., Koyffman, V., Lardemer, D., Burney, S., & Ahmed, M. (2008). Multiple interactions between cryptochrome and phototropin blue-light signaling pathways in Arabidopsis thaliana. Planta, 227, 1091-1099.
doi: 10.1007/s00425-007-0683-z.
Klimek‑Szczykutowicz, M., Porkopiuk, B., Dziurka, K., PAwLowska, B., Ekiert, H. & Szopa, A. (2022). The infuence of diferent wavelengths of LED light on the production of glucosinolates and phenolic compounds and the antioxidant potential in in vitro cultures of Nasturtium ofcinale (watercress). Plant Cell, Tissue and Organ Culture, 149, 113-122. https://doi.org/10.1007/s11240-021-02148-6
Lee, N. Y., Lee, M.J., Kim, Y.K., Park, J.C., Park, H.K., Choi. J.S., Hyun. J.N., Kim, K.J., Park K.H., Ko. J.K. & Kim, J.G. (2010). Effect of light emitting diode radiation on antioxidant activity of barley leaf. Journal of the Korean Society for Applied Biological Chemistry, 53, 685-690.
 DOI: 10.3839/jksabc.2010.104
Li, H., Tang, C. & Xu, Z.. (2013). Effects of different light sources on the growth of non-heading chinese cabbage. Journal of Agricultural Science, 4, 262-273. DOI: 10.5539/jas.v4n4p262
Lin, C. C. & Kao, C. H. (1999). NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant and Soil, 216, 147-153. https://doi.org/10.1023/A:1004714506156
Marchant, M.J., Molina, P., Montecinos, M., Guzmán, L., Balada, C.  &Castro, M. (2022). Effects of LED light spectra on the development, phytochemical profile, and antioxidant activity of Curcuma longa from Easter Island. Plants 11, 2701.
Morrison, T.A., Kessler, J.R., Hatfield, R.D. & Buxton, D.R, (1994) Activity of two lignin biosynthesis enzymes during development of a maize internode. Journal of the Science of Food and Agriculture, 65(2), 133-139.
Nakano, Y. & Asada, P. (1987). Purification of ascorbate peroxidase in spinach chloroplasts its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology, 28, 131-140.
Öztürk, M., Duru, M.E., İnce, B., Harmandar, M. & Topçu, G (2010). A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts. Food Chemistry, 123(4), 1352-1356. DOI: 10.1016/j.foodchem.2010.06.021
Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J. A. & Stanghellini, C.. (2019). Unraveling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, 10, 305.
Sabzalian, M. R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, MR. & Schoefs, B. (2014). High performance of vegetables, flowers and medicinal plants in a red–blue LED incubator for indoor plant production. Agronomy for Sustainable Development, 34, 879–886.  https://doi.org/10.1007/s13593-014-0209-6
Schopfer, P. & Mohr, H. (1972). Phytochrome-mediated induction of phenylalanine ammonia-lyase in mustard seedlings: a contribution to eliminate some misconceptions. Plant Physiology, 48, 8-15. doi: 10.1104/pp.49.1.8
Schuerger, A. C., Brown, C. S., & Styjewski, E .C. (1997). Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Annual Botany, 79, 273-282. DOI 10.1006/anbo.1996.0341
Shohael, A. M., Ali, M. B., Yu, K. W., Hahn, E. J., Islam, R. & Paek, K.Y. (2006). Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry, 41, 1179-1185. https://doi.org/10.1016/j.procbio.2005.12.015
Singleton, V. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
DOI: 10.5344/ajev.1965.16.3.144
Son, K-H. & Oh, M-M. (2015). Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Horticulture, Environment, and Biotechnology, 56, 639-653.
Taulavuori K., Hyöky V., Oksanen J., Taulavuori E. & Julkunen-Tiitto R. (2016). Species specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environmental and Experimental Botany, 121, 145-150. DOI: 10.1016/j.envexpbot.2015.04.002