Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105, 121-126.
doi: 10.1016/s0076-6879(84)05016-3
Ahmadi, T., Shabani, L. & Sabzalian, M. R. (2020). LED light mediates phenolic accumulation and enhances antioxidant activity in Melissa officinalis L. under drought stress condition. Protoplamsma, 257(4), 1231-1242. DOI :10.1007/s00709-020-01501-4
Ahmadi, T., Shabani, L. & Sabzalian, M. R. (2021). LED light sources improved the essential oil components and antioxidant activity of two genotypes of lemon balm (Melissa ofcinalis L.). Botanical Studies, 62, 9.
https://doi.org/10.1186/s40529-021-00316-7
Attridge, T. H. and Smith, H., 1967. A phytochrome-mediated increase in the level of phenylalanine ammonia-lyase in the terminal buds of Pisum sativum. Biochimistry and Biophysics Acta (BBA). 148, 805–807. https://doi.org/10.1016/0304-4165(67)90056-6
Beyer Jr, W. F. & Fridovich, I. (1987). Assaying for superoxide dismutase activity, some large consequences of minor changes in conditions.
Analytical Biochemistry, 161, 559-566.
https://doi.org/10.1016/0003-2697(87)90489-1
Bian, Zh., Lu, Ch., Grundy, S. & Lu, C. (2018). Uncovering LED light effects on plant growth: New angles and perspectives LED light for improving plant growth, nutrition and energy-use efficiency. Acta Horticulturae, 1227, 491-498. DOI: 10.17660/ActaHortic.2018.1227.62
Carmagnol, F., Sinet, P. M., Rapin, J. and Jerome, H. 1981. Glutathione-S-transferase of human red blood cells; assay, values in normal subjects and in two pathological circumstances: hyperbilirubinemia and impaired renal function. Clinica Chimica Acta, 117(2): 209-217. https://doi.org/10.1016/0009-8981(81)90040-1
Close, D.C., McArthur, C. 2002. Rethinking the role of many plant phenolics – protection from photodamage not herbivores? OIKOS 99: 166–172. DOI: 10.1034/j.1600-0706.2002.990117.x
Durst, F. and Mohr, H. (1966). Half-life of phytochrome-induced phenylalanine deaminase in mustard seedlings (Sinapis alba L.). Nuturwissenschaften 53, 707.
DOI: 10.1007/BF00602735
Foyer, C. H. and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21-25.
Goins, G. D., Yorio, N. C., Sanwo, M. M., & Brown, C. S. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,
Journal of Experimental Botany, 48, 1407-1413. DOI:
10.1093/jxb/48.7.1407
Heydarizadeh, P., Zahedi, M. & Sabzalian, M. R. (2013). The effect of LED light on plant performance, essential oil percentage and antioxidant enzyme activity in peppermint (Mentha piperita). Plant Process and Function, 3(8), 13-24. (In Persian). .
Iwai, M., Ohta, M., Tsuchiya, H. and Suzuki, T. (2010). Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. Journal of Functional Foods 2, 66-70.
Jung, E., Lee, S., Lim, S-H., Ha, S-H., Liu, K-H. and Lee, Ch. (2013). Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Science, 210, 61-69.
Kang, B., Grancher, N., Koyffman, V., Lardemer, D., Burney, S., & Ahmed, M. (2008). Multiple interactions between cryptochrome and phototropin blue-light signaling pathways in Arabidopsis thaliana. Planta, 227, 1091-1099.
doi: 10.1007/s00425-007-0683-z.
Klimek‑Szczykutowicz, M., Porkopiuk, B., Dziurka, K., PAwLowska, B., Ekiert, H. & Szopa, A. (2022). The infuence of diferent wavelengths of LED light on the production of glucosinolates and phenolic compounds and the antioxidant potential in in vitro cultures of Nasturtium ofcinale (watercress). Plant Cell, Tissue and Organ Culture, 149, 113-122. https://doi.org/10.1007/s11240-021-02148-6
Lee, N. Y., Lee, M.J., Kim, Y.K., Park, J.C., Park, H.K., Choi. J.S., Hyun. J.N., Kim, K.J., Park K.H., Ko. J.K. & Kim, J.G. (2010). Effect of light emitting diode radiation on antioxidant activity of barley leaf. Journal of the Korean Society for Applied Biological Chemistry, 53, 685-690.
DOI: 10.3839/jksabc.2010.104
Li, H., Tang, C. & Xu, Z.. (2013). Effects of different light sources on the growth of non-heading chinese cabbage.
Journal of Agricultural Science, 4, 262-273. DOI:
10.5539/jas.v4n4p262
Lin, C. C. & Kao, C. H. (1999). NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant and Soil, 216, 147-153. https://doi.org/10.1023/A:1004714506156
Marchant, M.J., Molina, P., Montecinos, M., Guzmán, L., Balada, C. &Castro, M. (2022). Effects of LED light spectra on the development, phytochemical profile, and antioxidant activity of Curcuma longa from Easter Island. Plants 11, 2701.
Morrison, T.A., Kessler, J.R., Hatfield, R.D. & Buxton, D.R, (1994) Activity of two lignin biosynthesis enzymes during development of a maize internode. Journal of the Science of Food and Agriculture, 65(2), 133-139.
Nakano, Y. & Asada, P. (1987). Purification of ascorbate peroxidase in spinach chloroplasts its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology, 28, 131-140.
Öztürk, M., Duru, M.E., İnce, B., Harmandar, M. & Topçu, G (2010). A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts.
Food Chemistry, 123(4), 1352-1356. DOI:
10.1016/j.foodchem.2010.06.021
Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J. A. & Stanghellini, C.. (2019). Unraveling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, 10, 305.
Sabzalian, M. R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, MR. & Schoefs, B. (2014). High performance of vegetables, flowers and medicinal plants in a red–blue LED incubator for indoor plant production.
Agronomy for Sustainable Development, 34, 879–886.
https://doi.org/10.1007/s13593-014-0209-6
Schopfer, P. & Mohr, H. (1972). Phytochrome-mediated induction of phenylalanine ammonia-lyase in mustard seedlings: a contribution to eliminate some misconceptions. Plant Physiology, 48, 8-15. doi: 10.1104/pp.49.1.8
Schuerger, A.
C., Brown, C.
S., & Styjewski, E
.C. (1997). Anatomical features of pepper plants (
Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.
Annual Botany, 79, 273-282. DOI
10.1006/anbo.1996.0341
Shohael, A. M., Ali, M. B., Yu, K. W., Hahn, E. J., Islam, R. & Paek, K.Y. (2006). Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in
Eleutherococcus senticosus somatic embryos in bioreactor.
Process Biochemistry, 41, 1179-1185.
https://doi.org/10.1016/j.procbio.2005.12.015
Singleton, V. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
DOI: 10.5344/ajev.1965.16.3.144
Son, K-H. & Oh, M-M. (2015). Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Horticulture, Environment, and Biotechnology, 56, 639-653.
https://doi.org/10.1007/s13580-015-1064-3
Taulavuori K., Hyöky V., Oksanen J., Taulavuori E. & Julkunen-Tiitto R. (2016). Species specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environmental and Experimental Botany, 121, 145-150. DOI: 10.1016/j.envexpbot.2015.04.002