Investigation of the expression pattern of some nitrogen transporter genes in root in two different cultivars of wheat

Document Type : Research Paper


Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, I. R. Iran



In crop production, one particularly limiting factor is the availability of nitrogen (N) and N derivatives, as they are of much significance in plant metabolism and growth. Various nitrate transporter genes mediate the uptake, transport, and remobilization of N in the plants. However, their role is not quite understood with respect to grain filling stages and plant’s overall yield. Herein, the expression of a number of genes and enzymes with roles in N uptake and metabolism was measured over the course of anthesis and under N-treatment and N-deficit condition in two wheat genotypes, namely Morvarid and Gonbad. The samples were taken 10, 15, and 20 days after anthesis, which is a critical stage in grain filling, and the relation between gene expression, enzyme activity, and days after anthesis was demonstrated. It was observed that N-related gene expression significantly increases under N-deficit condition and over the course of anthesis, suggesting the significance of the N-related genes and enzyme in maintaining the metabolism and growth of the plants under N-deficit conditions.


Article Title [Persian]

بررسی الگوی بیان برخی از ژن های ناقل نیتروژن در ریشه در دو رقم مختلف گندم

Authors [Persian]

  • سعید نواب پور
  • حوریه نجفی
  • فاطمه صحرایی قمش
گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ج. ا. ایران
Abstract [Persian]

در تولید محصولات زراعی، یکی از عوامل محدود کننده به ویژه در دسترس بودن نیتروژن (N) و مشتقات N است، زیرا آنها در متابولیسم و رشد گیاه اهمیت زیادی دارند. ژن های مختلف ناقل نیترات جذب، انتقال و جابجایی مجدد نیتروژن را در گیاهان واسطه می کنند. با این حال، نقش آنها با توجه به مراحل پر شدن دانه و عملکرد کلی گیاه کاملاً درک نشده است. در اینجا، بیان تعدادی از ژن‌ها و آنزیم‌های دارای نقش در جذب و متابولیسم نیتروژن در طول دوره گرده‌افشانی و در شرایط تیمار N و کمبود N در دو ژنوتیپ گندم مروارید و گنبد اندازه‌گیری شد. نمونه‌ها 10، 15 و 20 روز پس از گرده‌افشانی که مرحله‌ای حیاتی در پر شدن دانه است، گرفته شد و ارتباط بین بیان ژن، فعالیت آنزیم و روزهای پس از گرده‌افشانی نشان داده شد. مشاهده شد که بیان ژن مربوط به N به طور قابل توجهی در شرایط کمبود N و در طول دوره گرده‌افشانی افزایش می‌یابد، که نشان‌دهنده اهمیت ژن‌ها و آنزیم مربوط به N در حفظ متابولیسم و رشد گیاهان در شرایط کمبود N است.

Keywords [Persian]

  • بیان ژن ریشه
  • گندم
  • نیتروژن
Avila-Ospina, L., Marmagne, A., Talbotec, J., Krupinska, K., & Masclaux-Daubresse, C. (2015). The identification of new cytosolic glutamine synthetase and Asparagine Synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence. Journal of Experimental Botany, 66(7), 2013-2026.
Bartling, D., Radzio, R., Steiner, U., & Weiler, E. W. (1993). A glutathione S‐transferase with glutathione‐peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry, 216(2), 579-586.
Bernard, S. M., & Habash, D. Z .(2009) .The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 182(3), 608-620.  
Buchner, P., & Hawkesford, M. J. (2014). Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat. Journal of Experimental Botany, 65(19), 5697-5710.
 Cai ,C., Zhao, XQ., Zhu, Y. G., Li, B., & Tong, Y. P. (2007). Regulation of the high-affinity nitrate transport system in wheat roots by exogenous abscisic acid and glutamine. Journal of Integrative Plant Biology, 49(12), 1719-1725.
Chopin, F., Orsel, M., Dorbe, M. F., Chardon, F., Truong, H. N., Miller. A. J., Krapp, A., & Daniel-Vedele,  F. (2007). The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell, 19, 1590–1602.
Crawford, N. M., & Glass, A. D. M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science , 3(10), 389-395.
Duan, J., Tian, H., & Gao, Y. (2016). Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies. Crop and Pasture Science, 67(2), 128-136.
Forde, B. G. (2000) Nitrate transporters in plants: Structure, function and regulation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465, 219-235.
Forde, B. G .(2002). Local and long-range signaling pathways regulating plant responses to nitrate.  Annual Review of Plant Biology, 53(1), 203-224.
Gao, Y., de Bang, T. C., & Schjoerring, J. K. (2019). Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnology Journal, 17, 1209-1221.
Good, A. G., Shrawat, A. K., & Muench, D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 27(9):922-935.
Gregersen, P. L., Holm, P.B., & Krupinska, K. (2008). Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biology, 10(1), 37-49
Grudkowska, M., & Zagdanska, B. (2004). Multifunctional role of plant Cysteine Proteinases. Acta Biochimica Polonica, 51(3), 609-624.
Ho, C.-H., & Tsay, Y-F. (2010). Nitrate, ammonium, and potassium sensing and signaling. Current Opinion in Plant Biology, 13(5), 604-610.
Hoque, M. S., Masle, J., Udvardi, M. K., Ryan, P. R., & Upadhyaya, N. M. (2006). Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Functional Plant Biology, 33, 153–163.
Iqbal, A., Huiping, G., Xiangru, W. Hengheng, Z., Xiling, Z.,  & Meizhen, S. (2022). Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism. BMC Plant Biology 22, 122.
Jahn, T. P., Møller, A. L., Zeuthen, T., Holm, L. M., Klærke, D. A., Mohsin, B., & Schjoerring, J. K. (2004). Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett, 574(1-3), 31-6.
James, M., Masclaux-Daubresse, C., Marmagne, A., Azzopardi, M., Laîné, P., Goux, D., Etienne, P., & Trouverie, J. (2019). A new role for SAG12 Cysteine Protease in roots of Arabidopsis thaliana, Frontiers in Plant Science, 9.
Kiba, T., Feria-Bourrellier, A. B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Bréhaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H., & Krapp, A. (2012). The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell, 24(1), 245–258.
Lea, P. J., & Miflin, B. J. (2003). Glutamate synthase and the synthesis of glutamate in plants. Plant Physiology and Biochemistry, 41(6-7), 555-564.
Lejay, L., Tillard, P., Lepetit, M., Olive, F. D., Filleur, S., Daniel-Vedele, F., & Gojon, A. (1999). Molecular and functional regulation of two NO3-- uptake systems by N- and C-status of Arabidopsis plants. The Plant Journal, 18(5), 509-519.
Léran, S., Varala, K., Boyer, J. C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., ….... & Lacombe, B. (2014). A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 19(1), 5-9.‏
Leydecker, M. T., Camus, I., Daniel‐Vedele, F., & Truong, H. N. (2000). Screening for Arabidopsis mutants affected in the Nii gene expression using the Gus reporter gene. Physiologia Plantarum, 108(2), 161-170.
Lezhneva, L., Kiba, T., Feria-Bourrellier, A. B., Lafouge, F., Boutet-Mercey, S., Zoufan, P., Sakakibara, H., Daniel-Vedele, F., & Krapp, A. (2014). The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. The Plant Journal, 80(2), 230–41.
Liu, J., Fu, J., Tian, H., & Gao, Y. (2015). In-season expression of nitrate and ammonium transporter genes in roots of winter wheat (Triticum aestivum L.) genotypes with different nitrogen-uptake efficiencies. Crop and Pasture Science, 66(7), 671-678.
Martínez, D. E., Costa, M. L., Gomez, F. M., Otegui, M. S., & Guiamet, J. J. (2008). ‘Senescence-associated vacuoles‘ are involved in the degradation of chloroplast proteins in tobacco leaves. The Plant Journal, 56, 196–206.
Okamoto, M., Vidmar, J. J., & Glass, A. D. M. (2003). Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision. Plant and Cell Physiology, 44(3), 304-317.
Orsel, M., Chopin, F., Leleu, O., Smith, S. J., Krapp, A., Daniel-Vedele, F., & Miller, A. J. (2006). Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiology, 142(3), 1304-1317.‏
Orsel, M., Filleur, S., Fraisier, V., & Vedele, F. (2002). Nitrate transport in plants: Which gene and which control?. Journal of Experimental Botany, 53(370), 825-833.
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36.
Roxas, V. P., Smith, R. K., Allen, E. R., & Allen, R. D. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology, 15(10), 988-991.
Schroeder, J. I., Delhaize, E., Frommer, W. B., Guerinot, M. L., Harrison, M. J., Herrera-Estrella, L., …….. & Sanders, D. (2013). Using membrane transporters to improve crops for sustainable food production. Nature, 497, 60-66.‏
Søgaard, R., Alsterfjord, M., MacAulay, N., & Zeuthen, T. (2009). Ammonium ion transport by the AMT/Rh homolog TaAMT1; 1 is stimulated by acidic pH. Pflügers Archiv-European Journal of Physiology, 458, 733-743.‏
Vidmar, J. J., Zhuo, D., Siddiqi, M. Y., Schjoerring, J. K., Touraine, B., & Glass, A. D. (2000). Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiology, 123(1), 307-318.
Walch-Liu, P., Ivanov, I. I., Filleur, S., Gan, Y., Remans, T., & Forde, B. G. (2006). Nitrogen regulation of root branching. Annals of Botany, 97(5), 875-881.‏
Wei ,Y., Xiong, S., Zhang, Z., Meng, X., Wang, L., Zhang, X., Yu, M., Yu, H., Wang, X., & Ma, X. (2021). Localization, gene expression, and functions of glutamine synthetase isozymes in wheat grain (Triticum aestivum L.). Frontires in Plant Science, 12, 580405.
Yin, L. P., Li, P., Wen, B., Taylor, D., & Berry, J. O. (2007). Characterization and expression of a high-affinity nitrate system transporter gene (TaNRT2. 1) from wheat roots, and its evolutionary relationship to other NTR2 genes. Plant Science, 172(3), 621-631‏.
Zhang, H., & Forde, B. G. (2000). Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany, 51(342), 51-59.
Zhao, X. Q., Li, Y. J., Liu, J. Z., Li, B., Liu, Q. Y., Tong, Y. P., ....... & Li, Z. S. (2004). Isolation and expression analysis of a high-affinity nitrate transporter TaNRT2.3 from roots of wheat. Acta Botanica Sinica, 46(3), 347-354.‏
Zhuo, D., Okamoto, M., Vidmar, J J., & Glass, A D. (1999). Regulation of a putative high-affinity nitrate transporter (Nrt2;1At)  in roots of Arabidopsis thaliana. The Plant Journal, 17(5), 563-568.