Status of geminiviruses in Iran, incredible plant pathogens

Document Type : Review Article


1 Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, I. R. Iran

2 Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, I. R. Iran



The family Geminiviridae with fourteen accepted genera and an increasing number of unassigned species is currently identified as the largest family of plant‐infecting viruses. Their twinned icosahedral particles contain single-stranded genomic DNAs that are naturally transmitted by Hemiptera insects including whitefly (Bemisia tabaci), several species of leafhoppers, treehoppers and one species of aphid in a wide range of host plants. Also, some geminiviruses are transmitted by seeds in certain hosts. In addition to climate changes, industrial cultivations, and the development of global trade, the genetic flexibility of geminiviruses has led to an increase in the rate of their distribution. Diseases caused by geminiviruses constitute a serious constraint to tropical and sub-tropical agroecosystems worldwide. The economic losses caused by geminivirus infections have grown especially in open fields and greenhouses in Iran during the last years. Defining two distinct genera by having unique molecular and biological characteristics, Becurtovirus and Turncurtovirus, and the presence of different species and strains of other geminiviruses introduces Iran as a putative origin of diversification for old-world monopartite geminiviruses. This review presents the occurrence and diversity of the members of Geminiviridae in Iran. Moreover, some applicable control measures have been proposed based on compatibility with the Iran agroecosystem which would also be recommended for other tropical and subtropical regions  of the world. 


Article Title [Persian]

وضعیت جمینی‌‌ویروس‌ها در ایران، بیمارگرهای شگفت‌انگیز گیاهی

Authors [Persian]

  • سعید تابعین 1
  • سید علی اکبر بهجت نیا 2
1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران
2 گروه گیاهپزشکی، دانشکده کشاورزی شیراز، دانشگاه شیراز، ایران
Abstract [Persian]

تیره Geminiviridae با چهارده جنس پذیرفته شده و تعداد فزاینده‌ای از گونه‌های نامشخص، در حال حاضر به عنوان بزرگ‌ترین تیره ویروس‌های آلوده‌کننده گیاهان شناخته می‌شود. پیکره‌های بیست‌وجهی دوقلوی آنها حاوی دی‌ان‌ای‌های ژنومی تک‌لا است، که به طور طبیعی توسط حشراتی از راسته نیم‌بالان (Hemiptera) شامل سفیدبالک Bemisia tabaci و چند گونه زنجرک و شته در طیف وسیعی از گیاهان میزبان منتقل می‌شوند. همچنین برخی جمینی‌ویروس‌ها در میزبان‌های خاصی توسط بذر انتقال می‌یابند. علاوه بر تغییرات اقلیمی، کشت‌های صنعتی و توسعه تجارت جهانی، انعطاف‌پذیری ژنتیکی جمینی‌ویروس‌ها منجر به افزایش نرخ توزیع آنها شده است. بیماری‌های ناشی از جمینی‌ویروس‌ها یک محدودیت جدی برای اکوسیستم‌های کشاورزی در مناطق گرمسیری و نیمه‌گرمسیری سراسر جهان است. زیان‌های اقتصادی ناشی از آلودگی به جمینی‌ویروس‌ها در سال‌های اخیر به ویژه در مزارع و گلخانه‌های ایران افزایش یافته است. تعریف دو جنس متمایز با داشتن ویژگی‌های مولکولی و زیستی منحصر به فرد شامل جنس‌های Becurtovirus و Turncurtovirus، و وجود گونه‌ها و سویه‌های مختلف از سایر جمینی‌ویروس‌ها، ایران را به عنوان یکی از منشأهای بالقوه برای تنوع جمینی‌ویروس‌های تک‌بخشی دنیای قدیم معرفی می‌کند. در این بررسی به وقوع و تنوع جمینی‌ویروس‌ها در ایران پرداخته شده است و علاوه بر این، برخی اقدامات کنترلی قابل اجرا بر اساس سازگاری با اکوسیستم کشاورزی ایران پیشنهاد شده است که برای سایر مناطق گرمسیری و نیمه‌گرمسیری جهان نیز قابل توصیه خواهد بود.

Keywords [Persian]

  • اقدامات کنترلی
  • ایران
  • تنوع
  • جمینی‌ویروس‌ها
Abkhoo, J. (2015). Submission of GenBank Accession Numbers KP641673 and KP641674 that represent complete sequences from the 2 segments of tomato leaf curl New Delhi virus. Plant Biotechnology, University of Zabol, Mofateh, Zabol, Sistan 98616, Iran.
Ahooei, M. (2017). Seed transmission of beet curly top viruses in different hosts. (M.Sc. Thesis, College of Agriculture, Shiraz University, Shiraz, Iran). (In Persian).
Amin, I., Hussain, K., Akbergenov R., Yadav, J. S., Qazi, J., Mansoor, S., Hohn, T., Fauquet, C. M., & Briddon, R. W. (2011). Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. Molecular Plant Microbe Interaction, 24(8), 973–983. DOI: Scholar.
Anabestani, A. (2012). Prevalence of beet curly top viruses and expression of coat protein of Beet curly top Iran virus. (M.Sc. Thesis, College of Agriculture, Shiraz University, Shiraz, Iran). (In Persian).
Anabestani, A., Izadpanah, K., Tabein, S., Hamzehzarghani, H., & Behjatnia, S. A. A. (2016). Beet curly top viruses in Iran: Diversity and incidence in plants and geographical regions. Iranian Journal of Plant Pathology, 51, 493-504.
Anabestani, A., Behjatnia, S. A. A., Izadpanah, K., Tabein, S., & Accotto, G. P. (2017). Seed transmission of beet curly top virus and beet curly top Iran virus in a local cultivar of petunia in Iran. Viruses, 9, 299. doi:10.3390/v9100299
Astaraki, S., Safaei, N., & Shams-Bakhsh M. (2021). Reaction of sugar beet, pepper and bean plants to co-infection with cucumber mosaic virus and beet curly top viruses. Iranian Journal of Plant Pathology, 56 (3), 221-236.
Askari, F., Heydarnejad, J., Vaziri, S., Esmaeili, M., & Massumi, H. (2021). Chickpea chlorotic dwarf virus: Natural hosts and genome characterization of a virus isolate in eastern and southern Iran. Iranian Journal of Plant Pathology, 57(3), 203-216.
Askari, F., Heydarnejad, J., Vaziri, S., Sadeghi-Majd, J., Kamali, M., & Massumi, H. (2018). Chickpea chlorotic dwarf virus a polyphagous mastrevirus infecting crops and vegetables in Iran. The Proceeding of the 23rd Iranian Plant Protection Congress, Iran, Gorgan. pp. 612-613.
Azizi, A., Mozaffari, J., & Shams- Bakhsh M. (2008). Phenotypic and molecular screening of tomato germpalsm for resistance to Tomato yellow leaf curl virus. Iranian Journal of Biotechnology, 6, 199-207.
Azizi, A., Shams-Bakhsh. M., Mozafari, J., & Montazeri-Hedesh, R. (2011). Complete genomic sequence of a strain of tomato yellow leaf curl virus from Iran. Iranian Journal of Virology 5(3), 18-27.
Baghernejad, E. (2017). Effects of mixed infection of tomato yellow leaf curl virus and cucumber mosaic virus on tomato under glasshouse conditions. (M.Sc. Thesis, College of Agriculture, Shiraz University, Shiraz, Iran). (In Persian).
Baghernejad, E., Behjatnia S. A. A., Afsharifar, A., Hamzehzarghani, H. (2018). Changes in incidence and severity of tomato leaf curl disease and population dynamics of Bemisia tabaci in three tomato cultivars in greenhouse cultivation (Shiraz, Fars Province, Iran). Iranian Journal of Plant Pathology, 53, 327-341.
Bahari, A., Castillo Garriga, A., Safaie, N., Bejarano, E. R., Luna, A. P., & Shams-Bakhsh, M. (2022). Functional analysis of V2 protein of Beet curly top Iran virus. Plants, 11, 3351.
Bai, M., Yang, G. S., Chen, W. T., Lin, R. M., Ling, J., Mao, Z. C., & Xie, B. Y. (2016). Characterization and function of Tomato yellow leaf curl virus-derived small RNAs generated in tolerant and susceptible tomato varieties. Journal of Integrative Agriculture, 15, 1785-1797.
Bananej, K., Ahoonmanesh, A., & Kheyr‐Pour, A. (2002). Host range of an Iranian isolate of watermelon chlorotic stunt virus as determined by whitefly‐mediated inoculation and agroinfection, and its geographical distribution. Journal of Phytopathology, 150, 423-430.
Bananej, K., Kheyr-Pour, A., Hosseini Salekdeh, G., & Ahoonmanesh, A. (2004). Complete nucleotide sequence of Iranian tomato yellow leaf curl virus isolate: Further evidence for natural recombination amongst begomoviruses. Archives of Virology, 149, 1435-1443.
Bananej, K., Vahdat, A., & Hosseini-Salekdeh, G., (2009). Begomoviruses associated with yellow leaf curl disease of tomato in Iran. Journal of Phytopathology, 157, 243-247.
Bananej, K., Kraberger, S., & Varsani, A. (2016). Okra enation leaf curl virus in papaya from Iran displaying severe leaf curl symptoms. Journal of Plant Pathology, 98, 637-639.
Bananej, K., Shafiq, M., & Shahid, M. S. (2021). Association of cotton leaf curl Gezira virus with tomato leaf curl betasatellite infecting Carica papaya in Iran. Australasian Plant Disease Notes, 16, 1-4.
Banihashemi, Z. (2016). Physiological plant diseases (1th ed). Iran: Isfahan University of Technology.
Barbieri, M., Acciarri, N., Sabatini, E., Sardo, L., Accotto, G. P., & Pecchioni, N. (2010). Introgression of resistance to two Mediterranean virus species causing tomato yellow leaf curl in to a valuable traditional tomato variety. Journal of Plant Pathology, 92, 485-493.
Basij, M., Talebi, K., Ghadamyari, M., Hosseininaveh, V., Salami, S. (2017). Status of resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to neonicotinoids in Iran and detoxification by cytochrome P450-dependent monooxygenases.  Neotropical Entomology, 46, 115-124.
Behjatnia, S. A. A., Dry, I. B., & Rezaian, M. A. (1998). Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Research, 26, 925-931.
Behjatnia, S. A. A., Iazdpanah, K., Dry, I. B., & Rezaizn, M. A. (2004). Molecular characterization and taxonomic position of the Iranian isolate of tomato leaf curl virus. Iranian Journal of Plant Pathology, 40, 77-94.
Behjatnia, S. A. A., Eini Gandomani, O., & Rasoulpour, R. (2009). Infectivity of the cloned genome, transmission and host range of an Iranian isolate of tomato leaf curl geminivirus. Iranian Journal of Plant Pathology, 45, 54-69.
Behjatnia, S. A. A., Afsharifar, A. R., Tahan, V., Motlagh, M. H., Gandomani, O. E., Niazi, A., & Izadpanah, K. (2011). Widespread occurrence and molecular characterization of Wheat dwarf virus in Iran. Australasian Plant Pathology, 40, 12-19.
Behjatnia S. A. A., & Karimi A. (2015). Etiology of cotton leaf curl disease in Fars Province. First International and 9th National Biotechnology Congress, Tehran, Iran.
Bejerman, N., Trucco, V., De Breuil, S., Pardina, P. R., Lenardon, S., & Giolitti, F. (2018). Genome characterization of an Argentinean isolate of alfalfa leaf curl virus. Archives of Virology, 163, 799-803.
Bendahmane, M., Schalk, H. J., & Gronenborn, B. )1995(. Identification and characterization of wheat dwarf virus from France using a rapid method for geminivirus DNA preparation. Phytopathology, 85, 1449-1455.
Bennett C. W. (1971). The curly top disease of sugar beet and other plants. USA: America Phytopathological Society, St. Paul, MN.
Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology, 344, 158-168.
Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Beknazariants, D., Si-Ammour, A., Park, H. S., Vazquez, F., Robertson, D., Meins Jr, F., Hohn, T., & Pooggin, M. M. (2006). Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Research, 34, 6233-6246.
Bolok Yazdi, H. R., Heydarnejad, J., & Massumi, H. (2008). Genome characterization and genetic diversity of beet curly top Iran virus: A geminivirus with a novel nonanucleotide. Virus Genes, 36, 539 -545.
Boukari, W., Alcalá-Briseño, R. I., Kraberger, S., Fernandez, E., Filloux, D., Daugrois, J. H., Comstock, J. C., Lett, J. M., Martin, D. P., Varsani, A., & Roumagnac, P. (2017). Occurrence of a novel mastrevirus in sugarcane germplasm collections in Florida, Guadeloupe and Réunion. Virology Journal, 14, 1-8.
Briddon, R. W., Bull, S. E., Amin. I., Idris, A. M., Mansoor, S., Bedford, I. D., Dhawan, P., Rishi, N., Siwatch, S. S., Abdel-Salam, A. M., Brown, J. K., Zafar, Y., & Markham, P. G. (2003). Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology 312, 106–121.
Briddon, R. W., Heydarnejad, J., Khosrowfar, F., Massumi, H., Martin, D. P., & Varsani, A. (2010). Turnip curly top virus, a highly divergent geminivirus infecting turnip in Iran. Virus Research, 152, 169-175.
Briddon, R.W., Mansoor. S., Bedford, I. D., Pinner, M. S., Saunders, K,. Stanley, J., Zafar, Y., Malik, K. A., & Markham, P. G.  (2001). Identification of DNA components required for induction of cotton leaf curl disease. Virology 285, 234–243
Briddon, R. W., Pinner, M. S., Stanley, J., & Markham, P. G. (1990). Geminivirus coat protein gene replacement alters insect specificity. Virology, 177, 85-94.
Briddon, R. W., Stenger, D. C., Bedford, I. D., Stanley, J., Izadpanah, K., & Markham, P. G. (1998). Comparison of a Beet Curly Top Virus Isolate Originating from the Old World with Those from the New World. European Journal of Plant Pathology, 104, 77-84.
Briddon, R. W., Martin, D. P., Roumagnac, P., Navas-Castillo, J., Fiallo-Olivé, E., Moriones, E., Lett, J. M., Zerbini, F. M., & Varsani, A. (2018). Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus-and nanovirus-associated alphasatellites. Archives of Virology, 163, 2587-2600.
Brown, J. K., Fauquet, C. M., Briddon, R. W., Zerbini, F. M., Moriones, E., & Navas-Castillo, J. (2012). Geminiviridae. In A. M. Q. King, M. J., Adams, E. B., Carstens & E. J. Lefkowitz. (Ed.), Virus taxonomy, ninth report of the international committee on taxonomy of viruses (pp 351-373). London: Elsevier/Academic Press.
Boulton, M. I. (1995). Agrobacterium-mediated transfer of geminiviruses to plant tissues. In Heddwyn, J., (Ed.) Methods in Molecular Biology, (Vol 49., pp. 77–93) USA, Totowa, NJ: Humana Press.
Cohen, S., & Antignus, Y. (1994). Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. Advances in Disease Vector Research. 10, 259–288.
Catoni, M., Noris, E., Vaira, A. M., Jonesman, T., Matić, S., Soleimani, R., Behjatnia, S. A. A., Vinals, N., Paszkowski, J., & Accotto, G. P. (2018). Virus-mediated export of chromosomal DNA in plants. Nature Communications, 9, 1-8.
Czosnek, H. (2008). Tomato yellow leaf curl virus. In Mahy, B. W. J., & Van Regenmorte, M. H. V. (Eds.), Encyclopedia of Virology (pp 138-145). Oxford: Elsevier
Davoodi, Z., Heydarnejad, J., Massumi, H., Richet, C., Galzi, S., Filloux, D., & Roumagnac, P. (2018a). First report of alfalfa leaf curl virus from alfalfa in Iran. Plant Disease, 102, 2385.
Davoodi, Z., Bejerman, N., Richet, C., Filloux, D, Kumari, S. G., Chatzivassiliou, E. K., Galzi, S., ……… & Roumagnac, P.  (2018b). The westward journey of alfalfa leaf curl virus. Viruses, 10, 542. doi: 10.3390/v10100542.
Dry, I. B., Rigden, J. E., Krake, L. R., Mullineaux, P. M., & Rezaian, M. A. (1993). Nucleotide sequence and genome organization of tomato leaf curl geminivirus. Journal of General Virology 74, 147–151.
Dubrovina, A. S., & Kiselev, K. V. (2019). Exogenous RNAs for gene regulation and plant resistance. International Journal of Molecular Sciences, 20, 2282.
Ebadzad Sahraei, G. (2008). Molecular characterization of Iranian isolates of beet curly top virus. (M.Sc. Thesis, College of Agriculture, Shiraz University, Shiraz, Iran). (In Persian).
Ebadzad Sahraei, G., Behjatnia S. A. A., & Izadpanah, K. (2008). Infectivity of the cloned genome of Iranian isolate of Beet severe curly top virus in experimental hosts. Iranian Journal of Plant Pathology, 44, 176–183.
Ekzayez, A. M., Kumari, S. G., & Ismail, I. (2011). First report of Wheat dwarf virus and its vector (Psammotettix provincialis) affecting wheat and barley crops in Syria. Plant Disease, 95, 76-76.
Esmaeili, M., & Heydarnejad, J. (2014). Identification of wild hosts of Watermelon chlorotic stunt virus in south and south-eastern Iran. Agricultural Biotechnology Journal 13(1), 1-17.
Farzadfar, S. H., Pourrahim, R., Golnaraghi, A. R., & Ahoonmanesh, A. (2008). PCR detection and partial molecular characterization of Chickpea chlorotic dwarf virus in naturally infected sugar beet plants in Iran. Journal of Plant Pathology, 90, 247-251.
Fatahi, Z., Behjatnia, S. A. A., Afsharifar, A., Hamzehzarghani, H., & Izadpanah, K. (2012). Screening of sugar beet cultivars resistant to Iranian isolate of Beet severe curly top virus using an infectious clone of the virus. Iranian Journal of Plant Pathology. 48, 111–121.
Ferreira, M. A., Teixeira, R. M., & Fontes, E. P. B. (2021). Geminivirus–host interactions: Action and reaction in receptor-mediated antiviral immunity. Viruses, 13(5), 840. Doi: 10.3390/v13050840.
Fazeli, R., Heydarnejad, J., Massumi, H., Shaabanian, M., & Varsani, A. (2009). Genetic diversity and distribution of tomato-infecting begomoviruses in Iran. Virus Genes, 38, 311-319. 
Fiallo-Olivé, E., Lett, J. M., Martin, D. P., Roumagnac, P., Varsani, A., Zerbini, F. M., & Navas-Castillo, J. (2021). ICTV virus taxonomy profile: Geminiviridae. (2021). Journal of General Virology, 102, 001696.
Fiallo-Olivé. E., Martínez-Zubiaur, Y., Moriones. E., & Navas-Castillo J. (2012). A novel class of DNA satellites associated with New World begomoviruses. Virology, 426, 1–6.
DOI: 10.1016/j.virol.2012.01.024
Fiallo-Olive´, E., Pan, L-L., Liu, S-S., Navas-Castillo, J. (2020). Transmission of begomoviruses and other whiteflyborne viruses: Dependence on the vector species. Phytopathology, 110, 10–17
Fiallo‐Olivé, E., Tovar, R., & Navas‐Castillo, J. (2016). Deciphering the biology of deltasatellites from the New World: Maintenance by New World begomoviruses and whitefly transmission. New Phytologist, 212, 680-692.
Fondong, V. N. (2013). Geminivirus protein structure and function. Molecular Plant Pathology, 14, 635-649.
Fontenele, R. S., Salywon, A. M., Majure, L. C., Cobb, I. N., Bhaskara, A., Avalos-Calleros, J. A., Argüello-Astorga, G. R., …….. & Varsani, A. (2020). A novel divergent geminivirus identified in asymptomatic new world Cactaceae plants. Viruses, 12, 398.
Frischmuth, T., & Stanley, J. (1994) Beet curly top virus symptom amelioration in Nicotiana benthamiana transformed with a naturally occurring viral subgenomic DNA. Virology 200, 826–830
Frischmuth, T., & Stanley, J. (1992). Characterization of beet curly top virus subgenomic DNA localizes sequences required for replication. Virology, 189, 808–811.
Fuentes, A., Carlos, N., Ruiz, Y., Callard, D., Sánchez, Y., Ochagavía, M. E., Seguin, J., Malpica-López, N., Hohn, T., Lecca, M. R., & Pérez, R. (2016). Field trial and molecular characterization of RNAi-transgenic tomato plants that exhibit resistance to tomato yellow leaf curl geminivirus. Molecular Plant-Microbe Interactions, 29, 197-209.
Gan, D. F., Zhang, J. A., Jiang, H. B., Jiang, T., Zhu, S. W., & Cheng, B. J. (2010). Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Reports, 29, 1261-1268.
García-Andrés, S., Tomás, D. M., Sánchez-Campos, S., Navas-Castillo, J., Moriones, E., Frequent. (2007). Occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology, 365(1), 210-219.
Hollis, D. (1991). Whiteflies: Their bionomics, pest status and management. Gerling, D. (Ed.) (Andover, UK: Intercept, 1990). xvi 348 pp. 0-946707-16-2. Bulletin of Entomological Research, 81(2), 224-224.
Gharouni Kardani, S., Heydarnejad, J., Zakiaghl, M., Mehrvar, M., Kraberger, S., & Varsani, A. (2013). Diversity of beet curly top Iran virus isolated from different hosts in Iran. Virus Genes, 46, 571-575.
Ghodoum Parizipour M. H. (2011). Distribution of viruses causing sugar beet curly top disease and the effect of temperature on recovery of Beet severe curly top virus-infected plants. (M.Sc. Thesis, College of Agriculture, Shiraz University, Shiraz, Iran). (In Persian).
Ghodoum Parizipour, M. H., Behjatnia, S. A. A., Afsharifar, A., & Izadpanah, K. (2016). Natural hosts and efficiency of leafhopper vector in transmission of Wheat dwarf virus. Journal of Plant Pathology, 98, 483-492.
Ghorbani, S. G. M., Shahraeena, N., & Elahinia, S. A. (2010). Distribution and impact of virus associated diseases of common bean (Phaseolus vulgaris L.) in northern Iran. Archives of Phytopathology and Plant Protection, 43, 1183-1189.
Gilbertson, R. L., Batuman, O., Webster, C. G., & Adkins, S. (2015). Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology, 2, 67-93.
Hamilton, A. J., Brown, S., Yuanhai, H., Ishizuka, M., Lowe, A., Solis, A. G. A., & Grierson, D. (1998). A transgene with repeated DNA causes high frequency, post‐transcriptional suppression of ACC‐oxidase gene expression in tomato. The Plant Journal, 15, 737-746.
Hamza, M., Tahir, M. N., Mustafa, R., Kamal, H., Khan, M. Z., Mansoor, S., Briddon, R. W., & Amin, I. (2018). Identification of a dicot infecting mastrevirus along with alpha- and betasatellite associated with leaf curl disease of spinach (Spinacia oleracea) in Pakistan. Virus Research, 256, 174-182.
Hamzehzarghani, H., Behjatnia, S. A. A., & Delnavaz (2020). Segmented linear model to characterize tolerance to tomato yellow leaf curl virus and tomato leaf curl virus in two tomato cultivars under greenhouse conditions. Iran Agricultural Research, 39(2) 17-28.
Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., & Robertson, D. (2000). Geminiviruses: Models for plant DNA replication, transcription, and cell cycle regulation. Critical Reviews in Biochemistry and Molecular Biology, 35, 105-140.
Hanley-Bowdoin, L., Bejarno, E. R., Robertson, D., & Mansoor, S. (2013). Geminiviruses: Masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology, 11, 777-788.
Harlan, J. R. (1971). Agricultural Origins: Centers and Noncenters: Agriculture may originate in discrete centers or evolve over vast areas without definable centers. Science, 174, 468-474.
Hasanvand, V., Heydanejad, J., Massumi, H., Kleinow, T., Jeske, H. & Varsani, A. (2020).  Isolation and characterization of a novel geminivirus from parsley. Virus Research, 286, 198056.
Hasanvand, V., Kamali, M., Heydarnejad, J., Massumi, H., Kvarnheden, A., & Varsani, A. (2018). Identification of a new turncurtovirus in the leafhopper Circulifer haematoceps and the host plant species Sesamum indicumVirus Genes, 54, 840-845.
Heydarnejad, J., Hesari, M., Massumi, H., & Varsani A. (2013a). Incidence and natural hosts of Tomato leaf curl Palampur virus in Iran. Australasian Plant Pathology, 42, 195–203. DOI: 10.1007/s13313-012-0164-0
Heydarnejad, J., Hosseini, Abhari, E., Bolok-Yazdi, H. R., & Massumi, H. (2007). Curly top of cultivated plants and weeds and report of a unique curtovirus from Iran. Journal of Phytopathology 125. 321-325.
Heydarnejad, J., Keyvani, N., Razavinejad, S., Massumi, H., & Varsani, A. (2013b). Fulfilling Koch’s postulates for beet curly top Iran virus and proposal for consideration of new genus in the family Geminiviridae. Archives of Virology, 158, 435-443.
Heydarnejad, J., Mozaffari, A., Massumi, H., Fazeli, R., Gray, A. J., Meredith, S., Lakay, F., Shepherd, D. N., Martin, D. P., & Varsani, A. (2009). Complete sequences of tomato leaf curl Palampur virus isolates infecting cucurbits in Iran. Archives of Virology, 154, 1015-1018.
Heyraud, F., Matzeit, V., Kammann, M., Schaefer, S., Schell, J., & Gronenborn, B. (1993). Identification of the initiation sequence for viral‐strand DNA synthesis of wheat dwarf virus. The EMBO Journal, 12, 4445-4452.
Horowitz, A. R., Kontsedalov, S., & Ishaaya, I. (2004). Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 97, 2051-2056.
Hosseinzadeh, M. R., Shams-Bakhsh, M., Osaloo, S. K., & Brown, J. K. (2014). Phylogenetic relationships, recombination analysis, and genetic variability among diverse variants of tomato yellow leaf curl virus in Iran and the Arabian Peninsula: further support for a TYLCV center of diversity. Archives of Virology, 159, 485-497.
Jahanbin, D. (2013). Study of natural and experimental host range of Beet severe curly top virus, Beet curly top Iran virus and Tomato yellow leaf curl virus and interaction of these viruses in tomato plants under greenhouse conditions. (M.Sc. Thesis, College of Agriculture, Shiraz University, Shiraz, Iran). (In Persian).
Jahanbin, D., Izadpanah, K., & Behjatnia, S. A. A. (2015). Comparison of natural and experimental host range of Beet severecurly top, Beet curly top Iran and Tomato yellow leaf curl viruses. Iranian Journal of Plant Pathology, 51, 505-521.
Jeske, H., Lütgemeier, M., & Preiß, W. (2001). DNA forms indicate rolling circle and recombination‐dependent replication of Abutilon mosaic virus. The EMBO Journal, 20, 6158-6167.
Jeske, H. (2018). Barcoding of plant viruses with circular single-stranded DNA based on rolling circle amplification. Viruses, 10, 469.
Johansen, L. K., & Carrington, J. C. (2001). Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiology, 126, 930-938.
Jose, J., Usha, R. (2003). Bhendi yellow vein mosaic disease in India is caused by association of a DNA beta satellite with a Begomovirus. Virology 305:310–317
Kamali, M., Heydarnejad, J., & Massumi, H. (2018). Isolation and phylogenetic analysis of the jimsonweed isolate of Turnip curly top virus. Iranian Journal of Plant Pathology, 54(2), 77-85.
Kamali, M., Heydarnejad, J., Massumi, H., Kvarnheden, A., Kraberger, S., & Varsani, A. (2016). Molecular diversity of turncurtoviruses in Iran. Archives of Virology, 161, 551-561.
Kamali, M., Heydarnejad, J., Pouramini, N., Massumi, H. Farkas, K., Kraberger, S., & Varsani, A. (2017). Genome sequences of Beet curly top Iran virus, Oat dwarf virus, Turnip curly top virus, and Wheat dwarf virus identified in leafhoppers. Genome Announcement 5, 1-2.
Kammann, M., Schalk, H. J., Matzeit, V., Schaefer, S., Schell, J., & Gronenborn, B. (1991). DNA replication of wheat dwarf virus, a geminivirus, requires two cis-acting signals. Virology, 184, 7 86-790.
Kanakala, S., & Kuria, P. (2019). Chickpea chlorotic dwarf virus: An emerging monopartite dicot infecting mastrevirus. Viruses, 11, 5.
Kapooria, R. G., & Ndunguru, J. (2005). Occurrence of viruses in irrigated wheat in Zambia. EPPO Bulletin, 34, 413-419. DOI:10.1111/j.1365-2338.2004.00771.x
Kheyr-Pour, A., Bananej, K., Dafalla, G. A., Cacigli, P., Noris, E., Ahoonmanesh, A., Lecoq, H., & Gronenborn, B. (2000). Watermelon chlorotic stunt virus from the Sudan and Iran: Sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology, 90, 629-635.
Kil, E. J., Kim, S., Lee, Y. J., Byun, H. S., Park, J., Seo, H., Kim, C. S., Shim, J. K., Lee, J. H., Kim, J. K., & Lee, K. Y. (2016). Tomato yellow leaf curl virus (TYLCV-IL): A seed-transmissible geminivirus in tomatoes. Scientific Reports, 6, 1-10.
Kim, J., Kil, E. J., Kim, S., Seo, H., Byun, H. S., Park, J., Chung, M. N., Kwak, H. R., Kim, M. K., Kim, C. S., Yang, J. W., Lee, K. Y., Choi, H. S., & Lee, S. (2015). Seed transmission of Sweet potato leaf curl virus in sweet potato (Ipomoea batatas). Plant Pathology, 64, 1284-1291.
Kumar, J., Singh, S. P., & Tuli, R. (2014). Association of satellites with a mastrevirus in natural infection: Complexity of wheat Dwarf India virus disease. Journal of Virology, 88, 10269-10269.
Kundu, J. K., Gadiou, S., & Cervena, G. (2009). Discrimination and genetic diversity of Wheat dwarf virus in the Czech Republic. Virus Genes, 38, 468-474.
Lapidot, M., Karniel, U., Gelbart, D., Fogel, D., Evenor, D., Kutsher, Y., Makhbash, Z., Nahon, S., Shlomo, H., Chen, L., & Reuveni, M. (2015). A novel route controlling begomovirus resistance by the messenger RNA surveillance factor pelota. PLoS Genetics, 11,p.e1005538.
Li, M., Li, C., Jiang, K., Li, K., Zhang, J., Sun, M., Wu, G., & Qing, L. (2021). Characterization of pathogenicity-associated V2 protein of tobacco curly shoot virus. International Journal of Molecular Sciences, 22(2), 923. Doi: 10.3390/ijms22020923.
Lozano, G., Trenado, H. P., Fiallo-Olivé, E., Chirinos, D., Geraud-Pouey, F., Briddon, R. W., & Navas-Castillo, J. (2016). Characterization of non-coding DNA satellites associated with sweepoviruses (Genus Begomovirus, Geminiviridae) -definition of a distinct class of begomovirus-associated satellites. Frontiers in Microbiology, 7, 162. Doi: 10.3389/fmicb..00162. PMID: 26925037; PMCID: PMC4756297.
Lozano-Duran, R., Caracuel, Z., & Bejarano E. R. (2012). C2 from Beet curly top virus meddles with the cell cycle: A novel function for an old pathogenicity factor. Plant Signaling and Behavior, 7(12), 1705-1708.
Loriato, V. A. P., Martins, L. G. C., Euclydes, N. C., Reis, P. A. B., Duarte, C. E. M., & Fontes, E. P. B. (2020). Engineering resistance against geminiviruses: A review of suppressed natural defenses and the use of RNAi and the CRISPR/Cas system. Plant Science, 292, 110410.
Lotfipour, M., Amid Motlagh, M., Afshari Far, A., Behjat Nia, S. A. A., & Izadpanah, K. A. (2013). The nucleotide sequence of complete genome and taxonomic position of wheat and barley isolates of wheat strain of wheat dwarf virus in Iran. Iranian Journal of Plant Pathology, 49, 375-388.
Luna, A. P., & Lozano-Durán, R. (2020). Geminivirus-encoded proteins: Not all positional homologs are made equal. Frontiers in Microbiology, 11, 878. doi: 10.3389/fmicb.2020.00878
Luna, A. P., Romero-Rodríguez, B., Rosas-Díaz, T., Cerero, L., Rodríguez-Negrete, E. A., Castillo, A. G., & Bejarano, E. R. (2020). Characterization of Curtovirus V2 protein, a functional homolog of begomovirus V2. Frontiers in plant science, 11, 835.
Majidi, A., Hamzehzarghani, H., Izadpanah, K., & Behjatnia, S. A. A. (2017). Interaction between beet curly top Iran virus and the severe isolate of beet curly top virus in three selective sugar beet cultivars. Journal of Plant Pathology, 99, 381-389.
Makkouk, K. M., Shehab, S. & Majdalani, S. E. (1979). Tomato yellow leaf curl virus: incidence, yield losses and transmission in Lebanon. Journal of Phytopathology, 96: 263-267.
Mansoor, S., Briddon, R. W., Zafar, Y., & Stanley, J. (2003) Geminivirus disease complexes: an emerging threat. Trends in Plant Science. 8, 128-134.
Mansoor, S., Zafar, Y., & Briddon, R. W. (2006). Geminivirus disease complexes: the threat is spreading. Trends in Plant Science 11, 209–212.
Melita, O., Kaldis, A., Berbati, M., Reppa, C., Holeva, M., Lapidot, M., Gelbart, D., Otten, N., & Voloudakis, A. (2021). Topical application of double-stranded RNA molecules deriving from Tomato yellow leaf curl virus reduces cognate virus infection in tomato. Biologia Plantarum, 65, 100-110.
Miozzi, L., Gambino, G., Burgyan, J., & Pantaleo, V. (2013). Genome‐wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Molecular Plant Pathology, 14, 30-43.
Mitter, N., Zhai, Y., Bai, A. X., Chua, K., Eid, S., Constantin, M., Mitchell, R., & Pappu, H. R. (2016). Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Research, 211, 151-158.
Moitinho-Silva, L., Díez-Vives, C., Batani, G., Esteves, A. I., Jahn, M. T., & Thomas, T. (2017). Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics. The ISME Journal, 11, 1651-1666.
Montazeri Hedesh, R., Shams-Bakhsh, M., Mahmmodi, S. B. & Rajabi, A.  (2016). Evaluation of sugar beet lines for resistance to beet curly top viruses. Euphytica 210(1), 31-40. DOI: 10.1007/s10681-016-1693-3.
Montazeri Hedesh R., Shams-Bakhsh M., & Mozafari, J. (2011). Evaluation of common bean lines for their reaction to tomato yellow leaf curl virus-Ir2. Crop Protection 30, 163-167.
Mosallanejad, H. (2020). Introducing alternative insecticides against neonicotinoid-resistant greenhouse whiteflies (Trialeurodes vaporariorum). Technical Instruction (No. 37 with Registration No: 57120). Ministry of Jihad–e-Agriculture, Agricultural Research, Education & Extension Organization, Iranian Research Institute of Plant Protection. (In Persian).
Mosharaf, N., Tabein, S., Behjatnia, S. A. A., & Accotto, G. P. (2020). Identification of cotton leaf curl Multan virus, a new threating begomovirus in Iran. Iranian Journal of Plant Pathology, 56, 217-218.
Mubin, M., Amin, I., Amrao, L., Briddon, R. W., & Mansoor, S. (2010). The hypersensitive response induced by the V2 protein of a monopartite begomovirus is countered by the C2 protein. Molecular Plant Pathology, 11(2), 245–254.
Muhire, B., Martin, D. P., Brown, J. K., Navas-Castillo, J., Moriones, E., Zerbini, F.M., Rivera-Bustamante, R., Malathi, V. G., Briddon, R. W., & Varsani, A. A. (2013). Genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Archives of Virology, 158, 1411–1424.
Najar, A., Makkouk, K. M., Boudhir, H., Kumari, S. G., Zarouk, R,. Bessai, R., & Othman F. B.  (2000). Viral diseases of cultivated legume and cereal crops in Tunisia. Phytopathologia Mediterranea, 39, 423-432.
Namgial, T., Kaldis, A., Chakraborty, S., & Voloudakis, A. (2016). Induction of resistance against tomato leaf curl Gujarat virus using external application of dsRNA molecules initial observations. VirusDisease, 27, 405-459 (Abstracts of the 8th international geminivirus symposium and the 6th international ssDNA comparative virology workshop, 7–10th November 2016, New Delhi).
Nauen, R., & Denholm, I. (2005). Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Archives of Insect Biochemistry and Physiology, 58, 200-215.
Navas-Castillo, J., Fiallo-Olive´, E., & Sa´nchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248. 095235.
Nawaz-ul-Rehman, M. S., Mansoor, S., Briddon, R., & Fauquet, C. M. (2009). Maintenance of an old world betasatellite by a new world helper begomovirus and possible rapid adaptation of the betasatellite. Journal of Virology, 83, 9347-9355.
Ng, T. F. F., Duffy, S., Polston, J. E., Bixby, E., Vallad, G. E., & Breitbart, M. (2011). Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS ONE  6, e19050 DOI: 10.1371/journal.pone.0019050 
Pakniat-Jahromy, A., Behjatnia, S. A. A., Kharazmi, S., Shahbazi, M., & Izadpanah, K. (2010). Molecular characterization and construction of an infectious clone of a new strain of Tomato yellow leaf curl virus in southern Iran. Iranian Journal of Plant Pathology, 46, 101-115.
Pedigo, L. P., & Higley, L. G. (1992). A new perspective of the economic injury level concept and environmental quality. American Entomologist, 38, 12-21.
Petrov, N., Stoyanova, M., Andonova, R., & Teneva, A. (2015). Induction of resistance to potato virus Y strain NTN in potato plants through RNAi. Biotechnology and Biotechnological Equipment, 29, 21-26.
Pouramini, N., Heydarnejad, J., Massumi, H., & Varsani, A. (2019). Identification of the wild and cultivated hosts of cereal-infecting mastreviruses in Iran. Virus Disease, 30, 545-550.
Razavinejad, S., Heydarnejad, J., Kamali, M., Massumi, H., Kraberger, S., & Varsani, A. (2013). Genetic diversity and host range studies of turnip curly top virus. Virus Genes, 46, 345-353.
Razmi, A., Golestanipour, A., Nikkhah, M., Bagheri, A., Shamsbakhsh, M., & Malekzadeh-Shafaroudi S. (2019). Localized surface plasmon resonance biosensing of tomato yellow leaf curl virus. Journal of Virological Methods, 267, 1-7.
Rezaei, N., Montazeri, R., & Shams-Bakhsh M. (2020). Stability of resistance against beet curly top disease in the presence of cucumber mosaic virus in Arabidopsis thaliana. Journal of Crop Protection, 9(2), 233-249.
Rojas, M. R., Hagen C., Lucas, W. J., & Gilbertson, R. L. (2005). Exploiting chinks in the plants armor: Evolution and emergence of geminiviruses. Annual Review of Phytopathology, 43, 361-394.
Rojas, M. R., Macedo, M. A., Maliano, M. R., Soto-Aguilar, M., Souza, J. O., Briddon, R. W., Kenyon, L., Rivera Bustamante, R. F., Zerbini, F. M., Adkins, S., & Legg, J. P. (2018). World management of geminiviruses. Annual Review of Phytopathology, 56, 637-677.
Roumagnac, P., Granier, M., Bernardo, P., Deshoux, M., Ferdinand, R., Galzi, S., Fernandez, E., Julian, C., Abt, I., Filloux, D., & Mesléard, F. (2015). Alfalfa leaf curl virus: An aphid-transmitted geminivirus. Journal of Virology, 89, 9683-9688.
Roumagnac, P., Lett J. M., Fiallo-Olive, E., Navas-Castillo, J., Zerbini, F. M., Martin, D. P., & Varsani, A. (2022). Establishment of five new genera in the family Geminiviridae: Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, and Topilevirus. Archives of Virology, 167, 695-710.
Saadati, M., Rajabi, A., & Shams-Bakhsh, M. (2021). Identification of resistant sugar beet (Beta vulgaris L.) genotypes against beet curly top disease. Journal of Agricultural Science and Technology, 23, 473-484.
Sabouri, M., & Heydarnejad, J. (2013). Construction and demonstration of infectivity of the infectious clone of the bipartite genome of Tomato leaf curl Palampur virus-Iranian isolate. Iranian Journal of Plant Pathology, 49, 403-409.
Saeed, M., Behjatnia, S. A. A., Mansoor, S., Zafar. Y., Hasnain, S., & Rezaian, M. A. (2005) A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Molecular Plant-Microbe Interactions 18, 7–14.
Salari, Kh., Heydarnejad, J., Massumi, H., & Hasanvand, V. (2020). First report of cotton leaf curl Gezira virus incidence and the associated betasetellite from marshmallow, okra and sunflower in Iran. Iranian Journal of Plant Pathology 56(3), 305-308. DOI: 10.22034/IJPP..244378
Salari, Kh., Heydarnejad, J., Massumi, H., Hasanvand, V., & Varsani, A. (2023). Incidence of cotton leaf curl Gezira virus and the associated alphasatellites and betasatellites in crops and ornamental plants in southern Iran. Tropical Plant Pathology (In Press).
Salehzadeh, M., Afsharifar, A., Dehghanpour Farashah, S., & Rezaei, M, (2022). The first report of the Chilli leaf curl virus and its beta satellite from bell peppers and tomatoes from the central provinces of Iran. Iranian Journal of Plant Pathology, 57, 337-341.
Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong. S.M., & Stanley, J. (2000) A unique virus complex causes Ageratum yellow vein disease. Proceedings of the National Academy of Sciences USA 97, 6890–6895. DOI:10.1073/pnas.97.12.6890
Shamshiri, M., Heydarnejad, J., Kamali, M., Pouramini, N., & Massumi, H. (2019). Identification of wild hosts of tomato yellow leaf curl virus in south-eastern Iran. Archives of Phytopathology and Plant Protection, 52, 917-929.
Sangeetha, B., Malathi, V. G., Alice, D., Suganthy, M., & Renukadevi, P. (2018). A distinct seed-transmissible strain of tomato leaf curl New Delhi virus infecting Chayote in India. Virus Research, 258, 81-91.
Schubert, J., Habeku, A., Kazmaier, K., & Jeske, H. (2007). Surveying cereal-infecting geminiviruses in Germany-diagnostics and direct sequencing using rolling circle amplification. Virus Research, 127, 61-70.
Sharma, P., & Ikegami, M. (2010). Tomato leaf curl Java virus V2 protein is a determinant of virulence, hypersensitive response and suppression of posttranscriptional gene silencing. Virology, 396(1), 85–93.
Shirazi, M., Mozafari, J., Rakhshandehroo, F., & Shams-Bakhsh, M. (2014). Genetic diversity, host range, and distribution of tomato yellow leaf curl virus in Iran. Acta Virol.,  58(2):128-36.
doi: 10.4149/av_2014_02_128.
Soleimani, R., Matic, S., Taheri, H., Behjatnia, S. A. A., Vecchiati, M., Izadpanah, K., & Accotto, G. P. (2013). The unconventional geminivirus Beet curly top Iran virus: Satisfying koch's postulates and determining vector and host range. Annals of Applied Biology, 162, 174-181.
Stanley, J. (2004). Subviral DNAs associated with geminivirus disease complexes. Veterinary Microbiology, 98, 121–129
Stanley, J. (2008). Beet curly top virus. In Brian W. J. Mahy, Marc H. V. Van Regenmortel (Eds.). Encyclopedia of virology (Third Edition), Pages 301-307. London: Academic Press.
Stenger, D. C., Stevenson, M. C., Hormuzdi, S. G., & Bisaro, D. M. (1992). A number of subgenomic DNAs are produced following agroinoculation of plants with beet curly top virus. Journal of General Virology, 73, 237-242.
Tabein, S., Behjatnia, S. A. A., Laviano, L., Pecchioni, N., Accotto, G. P., Noris, E., & Miozzi, L. (2017). Pyramiding Ty-1/Ty-3 and Ty-2 in tomato hybrids dramatically inhibits symptom expression and accumulation of tomato yellow leaf curl disease inducing viruses. Archives of Phytopathology and Plant Protection, 50, 213-227.
Tabein, S., Jansen, M., Noris, E., Vaira, A. M., Marian, D., Behjatnia, S. A. A., & Accotto, G. P., Miozzi, L. (2020). The induction of an effective dsRNA-Mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region. Frontiers in Plant Science, 11, 533338.
Tabein, S., Miozzi, L., Matić, S., Accotto, G. P., & Noris, E. (2021). No evidence for seed transmission of tomato yellow leaf curl Sardinia virus in tomato. Cells, 10, 1673.
Tabein, S. (2022). Evaluation of two nontransformative approaches in triggering RNAi against tomato yellow leaf curl Virus. Plant Protection, 44, 77-88.
Tahan, V., Heydarnejad, J., & Jafarpour, B. (2019). Characterization of Beet curly top Iran virus infecting eggplant and pepper in north-eastern Iran. Indian Phytopathology, 73, 577–581.
Taheri H., Izadpanah K., & Behjatnia S. A. A. (2012). Circulifer haematoceps, the vector of the Beet curly top Iran virus. Iranian Journal of Plant Pathology, 48, 45.
Tenllado, F., & Díaz-Ruíz, J. R. (2001). Double-stranded RNA-mediated interference with plant virus infection. Journal of Virology, 75, 12288-12297.
Tenllado, F., Martínez-García, B., Vargas, M., & Díaz-Ruíz, J. R. (2003). Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnology, 3, 3. doi: 10.1186/1472-6750-3-3.
Tenllado, F., Llave, C., & Diaz-Ruiz, J. R. (2004). RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 102, 85-96.
Tijssen, P. (2005). The single stranded DNA viruses. In C. M. Fauquet, M. A. Mayo, J., Maniloff, U., Desselberger, L. A. Ball, (Eds), Virus Taxonomy, pp. 277-369. London: Academic Press.
Thirumdas, R., Kothakota, A., Pandiselvam, R., Bahrami, A., & Barba, F. (2021). Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: A review. Trends in Food Science and Technology, 110, 66-77.
Torab Jahromi S. N., Ahooei, M., Behjatnia, S. A. A., & Izadpanah, K. (2018a). Seed transmission rate of beet curly top virus and beet curly top Iran virus in petunia. The Proceedings of the 23rd Iranian Plant Protection Congress, 27-30 August 2018. Gorgan, Iran: Gorgan University of Agricultural Sciences and Natural Resources.
Torab Jahromi S. N. Behjatnia, S. A. A., & Izadpanah, K. (2018b). Impact of beet curly top virus and beet curly top Iran virus infection on the flowers and seed production of petunia. The Proceedings of the 23rd Iranian Plant Protection Congress, 27-30 August 2018. Gorgan, Iran: Gorgan University of Agricultural Sciences and Natural Resources.
Tsai, J. H. (2004). Pseudo-curly top treehopper, Micrutalis Malleifera (Fowler) (Hemiptera: Membracidae). In: Encyclopedia of entomology. Springer, Dordrecht.
Tu, Yu-C., Tsai, W-S., Jyuan-Yu, Wei., Kai-Ya, Chang., Chang-Ching, Tien., Hui-Yu, Hsiao., & Shih-Feng, Fu. (2017). The C2 protein of tomato leaf curl Taiwan virus is a pathogenicity determinant that interferes with expression of host genes encoding chromomethylases. Physiologia Plantarum, 161, 515-531.
Varsani, A., Martin, D. P., Navas -Castillo, J., Moriones, E., Hernández -Zepeda, C., Idris, A., Zerbini, F. M., & Brown, J. K. (2014a). Revisiting the classification of curtoviruses based on genome -wide pairwise identity. Archives of Virology, 159, 1873-1882.
Varsani, A., Navas-Castillo, J., Moriones, E., Hernández-Zepeda, C., Idris, A., Brown, J. K., Zerbini, F. M., & Martin, D. P. (2014b). Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Archives of Virology, 159, 2193-2203.
Varsani, A., Roumagnac, P., Fuchs, M., Navas-Castillo, J., Moriones, E., Idris, A., Briddon, R. W., Rivera-Bustamante, R., Zerbini, F. M., & Martin, D. P. (2017). Capulavirus and Grablovirus: Two new genera in the family Geminiviridae. Archives of Virology, 162, 1819-1831.
Wang, B., Li, F., Huang, C., Yang, X., Qian, Y., Xie, Y., & Zhou, X. (2014). V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. Journal of General Virology, 95(Pt 1), 225–230.
Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, 95, 13959-13964.
Xie, J., Wang, X., Liu, Y., Peng, Y., & Zhou, G. (2007). First report of the occurrence of Wheat dwarf virus in wheat in China. Plant Disease, 91, 111. doi: 10.1094/PD-91-0111B.
Yang, X., Ren, Y., Sun, S., Wang, D., Zhang, F., Li, D., Li, S., & Zhou, X. (2018). Identification of the potential virulence factors and RNA silencing suppressors of mulberry mosaic dwarf-associated geminivirus. Viruses, 10(9),
Yazdani-Khameneh, S., Aboutorabi, S., Shoori, M., Aghazadeh, A., Jahanshahi, P., Golnaraghi, A., & Maleki, M. (2016). Natural occurrence of tomato leaf curl New Delhi virus in Iranian cucurbit crops. The Plant Pathology Journal, 32, 201-208. doi: 10.5423/PPJ.OA.10.2015.0210
Yildirim, K., Kavas, M., Kaya, R., Seçgin, Z., Can, C., Sevgen, I., Saraç, Ç. G., & Tahan, V. (2022). Genome-based identification of beet curly top Iran virus infecting sugar beet in Turkey and investigation of its pathogenicity by agroinfection. Journal of Virological Methods, 300, 114380.
Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, J., Rivera-Bustamante, R., Roumagnac, P., Varsani, A., & Consortium, I. R. (2017). ICTV virus taxonomy profile: Geminiviridae. Journal of General Virology, 98, 131-133.
doi: 10.1099/jgv.0.000738.
Zhai, Y., Roy, A., Peng, H., Mullendore, D. L., Kaur, G., Mandal, B., Mukherjee, S. K. & Pappu, H. R. (2022). Identification and functional analysis of four RNA silencing suppressors in begomovirus croton yellow vein mosaic virus. Frontiers in Plant Science, 12, 768800.
Zhang, J., Dong, J., Xu, Y. & Wu, J. (2012). V2 protein encoded by Tomato yellow leaf curl China virus is an RNA silencing suppressor. Virus Research, 163(1), 51–58.
Zhou, X. P., Xie, Y., Tao, X. R., Zhang, Z. K., Li, Z.H., & Fauquet, C. M. (2003). Characterization of DNA beta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. Journal of General Virology 84, 237–247.
Zrachya, A., Glick, E., Levy, Y., Arazi, T., Citovsky, V. & Gafni, Y. (2007). Suppressor of RNA silencing encoded by tomato yellow leaf curl virus-Israel. Virology, 358(1), 159–165.