The effects of Arbuscular mycorrhiza on the growth and physiological characteristics of grafted cucumber under salinity stress

Document Type : Research Paper


Department of Horticulture- College of Agriculture- Isfahan University of Technology, Isfahan, I.R. Iran



This study aimed to study the mutual effects of grafting and Arbuscular mycorrhiza on cucumber. The experimental design was a factorial experiment based on a randomized block design. Accordingly, treatments were mycorrhiza inoculation including non-inoculation mycorrhiza (AM1) as the control, mycorrhiza with 2400 spores per pot (AM2); and grafting, in which cucumbers (Cucumis sativus var. super daminos) were grafted on Lagenaria siceraria (R2) and non-grafted cucumbers (R1), and the salinity concentration included the control (C), without adding NaCl, medium salinity equal to 30 mM NaCl and high salinity equal to 60 mM NaCl with three replications. The results showed that growth parameters such as the number of male and female flowers, time of appearance of the first male and female flower, the node number of the first female flower, stem length, the number of nodes and leaves, shoot and root fresh weights, were decreased with salinity stress. Grafting also affected the time of appearance of the first male flower and in the node, the number of the first female flower appearance at high and moderate NaCl concentrations. The appearance of the first female flower was postponed under the high concentration of NaCl. Photosynthetic reduction detected in cucumbers subjected to salinity was associated with a decrease in their chlorophyll and mesophyll conductance. In addition to reducing the photosynthesis rate, chlorophyll fluorescence was also affected by moderate and high salinity stress. Generally, grafting and mycorrhiza application decreased the harmful effect of salinity, especially in moderate salinity.


Article Title [Persian]

تأثیر Arbuscular mycorrhiza بر خصوصیات فیزیولوژیکی و رشدی خیار پیوندی تحت تنش شوری

Authors [Persian]

  • علی فرجی‌منش
  • مریم حقیقی
  • فریناز پرنیانی فرد
گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ج.ا. ایران
Abstract [Persian]

این مطالعه با هدف بررسی تأثیر متقابل پیوند و Arbuscular mycorrhiza  بر روی خیار انجام شد. طرح آزمایشی، آزمایش فاکتوریل بر اساس بلوک‌های کاملا تصادفی بود. تیمارها مایه‌‌زنی مایکوریزا شامل بدون مایه‌‌زنی مایکوریزا ((AM1) به عنوان شاهد و میکوریزا با 2400 اسپور در هر گلدان (AM2)، و پیوند، که در آن خیار (Cucumis sativus var. super daminos) بر Lagenaria siceraria  پیوند شد (R2) و خیارهای غیر پیوندی (R1) و  غلظت شوری  شامل شاهد (C)، بدون اضافه نمودن NaCl ، شوری متوسط برابر با غلظت 30 میلی مولار NaCl و شوری زیاد برابر با غلظت 60  میلی مولار NaCl با سه تکرار بود. نتایج نشان داد که پارامترهای رشد مانند تعداد گل­های نر و ماده، زمان ظهور اولین گل نر و ماده ، تعداد گره اولین گل ماده ، طول ساقه ، تعداد گره و برگ ، وزن تر شاخساره و ریشه در  تنش شوری کاهش یافت. پیوند فقط در زمان ظهور اولین گل نر و در تعداد گره اولین گل ماده در غلظت‌های بالا و متوسط NaCl اثر گذاشت. ظهور اولین گل ماده تحت غلظت بالای NaCl به تعویق افتاد. کاهش فتوسنتز تشخیص داده شده در خیارهای تحت شوری  با کاهش کلروفیل و هدایت مزوفیل آن­ها همراه بود. علاوه بر کاهش میزان فتوسنتز ، فلورسانس کلروفیل  نیز تحت تأثیر تنش شوری متوسط و زیاد قرار گرفت. بطور کلی­، اثر متقابل پیوند و میکوریزا به خیار کمک می‌کند تا اثر مضر شوری­، به ویژه شوری متوسط را کاهش دهد.

Keywords [Persian]

  • پایه
  • تنش شوری
  • مایکوریز
  • میکروارگانیزم
Abdelhafez, A. A., & Abdel-Monsief, R. A. (2006). Effects of VA mycorrhizal inoculation on growth, yield and nutrient content of cantaloupe and cucumber under different water regimes. Journal of Agriculture and Biological Sciences, 2(6), 503-508.
Ait-El-Mokhtar, M., Baslam, M., Laouane, R. B., Anli, M., Boutasknit, A., Mitsui, T., Wahbi, S., & Meddich, A. (2020). Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Frontiers in Sustainable Food Systems, 4, 1-19.
Ahmadi, A., & Siosemardeh, A. (2005). Investigation on the physiological basis of grain yield and drought resistance in wheat: leaf photosynthetic rate, stomatal conductance, and non-stomatal limitation. International Journal of Agriculture and Biology, 7, 807-811.
Bates, L. S., Waldarn, R. P., & Teare, I. P. (1973). Rapid determination of free proline for water studies. Plant and Soil, 39, 205-208.
Bie, Z., Nawaz, M. A., Huang, Y., Lee, J. M., & Colla, G. (2017). Introduction to vegetable grafting. In Colla, G., Alfocea, F. P., & Schwarz, D. (Eds.), Vegetable grafting: Principle and Practices (pp. 1–21). UK: CBAI Publishing.
Borde, M., Dudhane, M., & Jite, P. (2011). Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glauca) crop under salinity stress condition. Crop Protection, 30, 265–271.
Canakci, S., & Karaboga, Z. (2013). Some physiological and biochemical responses to cadmium in salicylic acid applied cucumber (Cucumis sativus L.) seedlings. Pakistan Journal of Botany, 45, 1963–1968.
Colla, G., Rouphael, Y., Cardarelli, M., & Rea, E. (2006a). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. American Society for Horticultural Science, 41, 622- 627.
Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., & Rea, E. (2006b). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. Journal of Horticultural Science and Biotechnology, 81, 146- 152.
Colla, G., Rouphael. Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulture, 127, 147–155.
Derbew, B. Y., Mokashi, A. N., Patil, C. P., & Hegde, R. V. (2007). Effect of mycorrhizal inoculation and different salinity levels on root colonization, growth and chlorophyll content of grape rootstocks (Vitis spp). Tropical Agricultural Research & Extension, 10, 79–83.
Elahi, F. E. M., Aminuzaman, F. M., Mridha, M., Begum, B., & Harun Akmy, J. (2010). AMF inoculation reduced arsenic toxicity and increased growth, nutrient uptake and chlorophyll content of tomato grown in arsenic amended soil. Advances in Environment Biology, 4(2), 144-200.
Evelin, H., Giri, B., & Kapoor, R. (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 22, 203–217.
Gogoi, P., & Singh, R. K. (2011). Different effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian Journal of Sciences and Technology, 4(2), 119- 125.
Goreta, S., Bucevic-Popovic, V., Selak, G. V., Pavela-Vrancic, M., & Perica, S. (2008). Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. Journal of Agricultural Science, 146(6), 695- 700.
Hajiboland, R., Aliasgharzadeh, A., Laiegh, S. F., & Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improve salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331, 313-327.
Hajlaoui, H., Ayeb, N. E.,  Garrec, J. P.,  & Denden, M. (2010). Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products, 31, 122–130.
Haghighi, M., Mohammadnia, S., Attai. Z., & Pessarakli, M. (2017). Effects of mycorrhiza inoculation on cucumber growth irrigated with saline water. Journal of Plant Nutrition, 40(1), 128-137.
Harbinson, J. (2013). Improving the accuracy of chlorophyll fluorescence measurements. Plant Cell & Environment, 36, 1751–1754.
Juniper, S., & Abbott, L. K. (2006). Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16, 371–379.
Jones, R.W., Pike, L. M., & Yourman, L. F. (1989). Salinity influences cucumber growth and yield. Journal of the American Society for Horticultural Science, 114, 547-551.
Koleva, I. I, van Beek, T. A., Linssen, J. P. H., de Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 1, 8-17.
Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCI during development of rice varieties differing in salinity resistance. Journal of Experimental Botany, 46, 1843–1852.
Maxwell, K., Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51, 659- 668.
Mohammadnia, S., & Haghighi, M. (2021). ‘Momordica charantia’ introducing a new rootstock for grafted cucumber under low­temperature stress. Advances in Horticultural Science, 35(2), 99-110.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
Nawaz, M. A., Shireen, F., Huang, Y., Bie, Z., Ahmed, W., & Saleem, B. A. (2017). Perspectives of vegetable grafting in Pakistan, current status, challenges and opportunities. International Journal of Agriculture and Biology, 19(5), 1165–1174.
Ortas, I., & Ustuner, O. (2014). Determination of different growth media and various mycorrhiza species on citrus growth and nutrient uptake. Scientia Horticulturae, 166, 84–90.
Parthasarathi, Th., Ephrath, J., & Lazarovitch, N. (2021). Grafting of tomato (Solanum lycopersicum L.) onto potato (Solanum tuberosum L.) to improve salinity tolerance. Scientia Horticulturae, 282, 201-210.
Porcel, R., Redondo-Gómez, S., & Mateos-Naranjo, E. (2015). Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of plant physiology, 185, 75–83.
Quilambo, O. A. (2000). Functioning of peanut (Arachis hypogaea L.) under nutrient deficiency and drought stress in relation to symbiotic associations. (Doctoral dissertation. University of Groningen. Groningen. Netherlands).
Ravindran, K. C., Venkatesa, K., Balakrishan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.
Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63,49–58.
Rooney, D. C., Killham, K., Bending, G. D., Baggs, E., Weih, M., & Hodge, A. (2009). Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Science, 14(10), 542-549.
Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127, 156–161.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with hosphomolybdic-phosphotungstic acid reagents. The American Journal of Enology and Viticulture, 16(3), 144-158.
Shahid, M. A., Balal, R. M., Khan, N., Simón-Grao, S., Alfosea-Simón, M., Cámara-Zapata, J. M., Mattson., N. S., & Garcia-Sanchez, F. (2019). Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system, osmolyte concentration, and toxic ion accumulation. Scientia Horticulture, 250, 1–11.
Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews in Environmental Science and Bio/Technology, 14, 407–426.
Sheng, M., Tang, M., Zhang, F., & Huang, Y. (2011). Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza, 21, 423–430.
Sheng, M., Tang, M., Chan, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhiza on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287–296.
Sun, S., Li, M., Zuo, J., Jiang, W., & Liu, D. (2015). Cadmium effects on mineral accumulation, antioxidant defense system and gas exchange in cucumber. Zemdirbyste-Agriculture, 102(2), 193–200.
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.
Verma, S., & Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology, 162, 669–677.
Wu, Q. S., Zou, Y. N., & He, X. H. (2010). Contribution of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiological Plantarum, 32, 297–304.
Wu, G., Sun, B., Wang, Y., Xin, G., Ye, Sh., & Peng. Sh. (2011). Arbuscular mycorrhizal fungal colonization improves regrowth of bermudagrass (Cynodom dactylon L.) after cutting. Pakistan Journal of Botany, 43(1), 85-93.
Yan, Y. Y., Wang, S. S., Wei, M., Gong, B., & Shi, Q. H. (2018). Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Horticultural Plant Journal, 4, 239–249.
Yang, Y. J., Wang, L. P., Tian, J., Li, J., Sun, J., He, L. Z., Guo, S. R., & Tezuka, T. (2012). Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings. Plant Physiology and Biochemistry, 58, 54-65.
Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., & Yu, J. Q. (2006). Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56, 255–262.
Yetisir, H., Caliskan, M. E., Soylu, S., & Sakar, M. (2006). Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding. Environmental and Experimental Botany, 58, 1–8.
Zhang, H. S., Wu, X. H., & Li, G. (2011). Interactions between arbuscular mycorrhizal fungi and phosphate solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biology and Fertility of Soils, 47, 543–554.
Zrig, A., Tounekti, T., Vadel, A. M., Mohamed, H. B., Valero, D., Serrano, M., Chtara, C., & Khemira, H. (2011). Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry, 49, 1313e1322.