Ranking production units by integrating data envelopment analysis and multi-criteria decision-making: The case of potato-producing provinces in Iran

Document Type : Research Paper

Authors

Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, I. R. Iran

Abstract

Efficiency is the first step towards accomplishing sustainable agriculture. To provide a comprehensive image of the status of potato-producing provinces in Iran, this research was conducted to rank potato-producing provinces in Iran using the DEA ranking models, including cross-efficiency, super efficiency, best and worst relative efficiency, and distance to the ideal hyperplane. Then to provide a more comprehensive image of their status, the results were integrated using the TOPSIS technique for 2018. In this regard, the research considered yield and gross profit as indicators of production and profitability. The results showed that considering yield as an output shows higher efficiency than when profit is considered. Higher yield efficiency than profit efficiency means that producers care more about increasing production as an objective output than increasing profitability. The rankings of the provinces revealed that different ranking models do not provide similar results, so they need to be integrated to give a more precise assessment. The integration of these indicators by the TOPSIS method shows that the provinces of Mazandaran, Kerman and West Azerbaijan, which have good ranks in yield and profit efficiency, can be good patterns for other provinces. Furthermore, profit and yield efficiency are negatively related to seed, K-fertilizer, and pesticide, so the management of biofertilizers, as well as biological control and integrated pest management, are recommended for the improvement of the efficiency of potato-producing provinces. 

Keywords


Article Title [Persian]

رتبه بندی واحدهای تولیدی بر مبنای تلفیق تحلیل فراگیر داده ها و تصمیم گیری چندمعیاره (مطالعه موردی: استان های تولید کننده سیب‌زمینی در ایران)

Authors [Persian]

  • سید محمد جعفر اصفهانی
  • الهام باریکانی
موسسه پژوهش‌های برنامه‌ریزی، اقتصاد کشاورزی و توسعه روستایی. تهران، ایران. ج.ا. ایران
Abstract [Persian]

ارتقا کارایی گام اول درحرکت به سمت کشاورزی پایدار است. در این مطالعه باهدف ارائه یک تصویر جامع‌ از جایگاه استان‌های تولیدکننده محصول سیب‌زمینی، رتبه­بندی استان­ها با استفاده از مدل‌های کارایی متقاطع، ابر کارایی، فاصله نسبی با واحد ایده‌آل و آنتی ایده‌آل و فاصله تا ابر صفحه ایده­آل انجام شد.سپس برای ارائه تصویری جامع تر از وضعیت آنها،  نتایج به‌دست‌آمده برای سال 1397 با استفاده از تکنیک تاپسیس تلفیق شدند. در این پژوهش میزان عملکرد و سود ناخالص به‌عنوان شاخصی برای تولید و سودآوری در نظر گرفته شد.  نتایج مطالعه نشان داد میانگین کارایی تولیدکنندگان با در نظر گرفتن عملکرد به‌عنوان ستاده بالاتر از زمانی است که سود به‌عنوان ستاده در نظر گرفته شود. بالاتر بودن کارایی عملکرد از کارایی سود نشان‌دهنده توجه بیشتر به افزایش تولید نسبت به سودآوری است. نتایج رتبه­بندی استان‌های تولیدکننده نشان داد که مدل‌های مختلف رتبه­بندی نتایج یکسانی ارائه نمی­کنند و لازم است به‌منظور ارزیابی دقیق­تر این نتایج با یکدیگر تلفیق شوند. تلفیق این شاخص ها به روش تاپسیس نشان داد استان‌هایی مانند مازندران، کرمان و آذربایجان غربی که هم از نظر کارایی عملکرد و هم از نظر کارایی سود در موقعیت مطلوبی قرار داشتند میتواند الگوی‌های مناسبی برای سایر استانهای در زمینه تولید این محصول باشند. همچنین با توجه به رابطه منفی نهاده‌های بذر، کودپتاسه و سموم شیمیایی با رتبه استان­های تولید کننده، مدیریت در استفاده از کودهای زیستی، همچنین کنترل بیولوژیکی و مدیریت تلفیقی آفات برای بهبود کارایی استانهای تولید کننده سیب‌زمینی توصیه می‌شود.

Keywords [Persian]

  • تاپسیس
  • تحلیل فراگیر داده‌ها
  • سیب‌زمینی
  • کارایی
  1. Aghayi, N., Hosseinzadeh Lotfi, F., Gholami, K., & Ghelej Beigi, Z. (2018). Ranking and sensitivity analysis for ranks of DMUs based on the ideal hyperplan. Journal of Operational Research and Its Applications, 15(2), 125-133. In persian.

    Amadeh, H., Emami Meibodi, A., & Azadinezhad, A. (2011). Ranking the Iranian provinces by technical efficiency of industrial sector by applying DEA method. Monetary & Financial Economics, 16(29), 162-180.In persian. https://doi.org/10.22067/pm.v16i29.27199  

    Anderson, P., & Peterson, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis.‏ Management Science 10, 1261-1264.

    Aparicio, J., & Zofío, J. (2020). Economic cross-efficiency. Omega, 100, 1-16. https://doi.org/10.1016/j.omega.2020.102374

    Aydın, U., Karadayi, M. A., & Ülengin, F. (2020). How efficient airways act as role models and in what dimensions? A superefficiency DEA model enhanced by social network analysis. Journal of Air Transport Management, 82, 101725. https://doi.org/https://doi.org/10.1016/j.jairtraman.2019.101725

    Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.

    Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069. https://doi.org/https://doi.org/10.1016/j.eswa.2012.05.056

    Bian, Y., & Xu, H. (2013). DEA ranking method based upon virtual envelopment frontier and TOPSIS. System Engineering Theory and Practice, 33(2), 482-488.

    Bolandnazar, E., Keyhani, A., & Omid, M. (2014). Determination of efficient and inefficient greenhouse cucumber producers using data envelopment analysis approach, a case study: Jiroft city in Iran. Journal of Cleaner Production, 79, 108-115.

    Chen, P. (2021). Effects of the entropy weight on TOPSIS. Expert Systems with Applications, 168, 114186. https://doi.org/https://doi.org/10.1016/j.eswa.2020.114186

    Cullinane, K., Song, D. W., Ji, P., & Wang, T. F. (2004). An application of DEA windows analysis to container port production efficiency. Review of network Economics, 3(2), 184-205.‏

    Dehdasht Id, G., Salim, M., Id, F., Zin, R. M., & Abidinid, N. Z. (2020). A hybrid approach using entropy and TOPSIS to select key drivers for a successful and sustainable lean construction implementation, PLoS One, 15(2),1-32. https://doi.org/10.1371/journal.pone.0228746.

    Devaux, A., Goffart, J. P., Petsakos, A., Kromann, P., Gatto, M., Okello, J., Suarez, V., & Hareau, G. (2020). Global food security, contributions from sustainable potato agri-food systems, In H. Campos & O. Ortiz (Eds.), The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind (pp. 3-35). Springer International Publishing. https://doi.org/10.1007/978-3-030-28683-5_1      

    Durst, P., & Bayasgalanbat, N. (2014). Promotion of underutilized indigenous food resources for food security and nutrition in Asia and the Pacific. Food and Agriculture Organization of the United Nations regional office for Asia and the Pacific Bangkok, 2014. Retrived from: http://www.fao.org/3/a-i3685e.pdf 

    Esfahani, S.M.J (2022a). Ranking wheat-producing provinces of Iran based on eco-efficiency. Environmental Resources Research, 10(1), 81-92. doi: 10.22069/ijerr.2022.6033.

    Esfahani, S. M. J. (2022b). Management of energy consumption and greenhouse gas emissions using the optimal farm scale: Evidence from wheat production in South Khorasan Province. Iran Agricultural Research, 40(2), 71-83. doi: 10.22099/iar.2022.41569.1461

    FAO. (2020). FAOSTAT, crop statistics. Retrived from: http://www.fao.org/faostat/en/#data/QC

    Graubner, M., & Ostapchuk, I. (2018). Efficiency and profitability of Ukrainian crop production. Agricultural Policy Report, Institute for Economic Research and Policy Consulting, Reytarska, Kyiv, Ukraine. Retrieved from: https://www.apd-ukraine.de/images/Efficiency_and_Profitability_of_Ukrainian_Crop_Production.pdf

    Hatami, A., Marbini Saati, S., & Makui, A. (2010). Ideal and anti-ideal decision making units: A fuzzy DEA approach. Journal of Industrial Engineering International, 6(10), 31-34.

    Haverkort, A. J., de Ruijter, F. J., van Evert, F. K., Conijn, J. G., & Rutgers, B. (2013). Worldwide sustainability hotspots in potato cultivation. 1. Identification and mapping. Potato Research, 56(4), 343-353. https://doi.org/10.1007/s11540-013-9247-8

    Hwang, C. L., Yoon, K. (1981). Methods for multiple attribute decision making. In: Multiple attribute decision making. Lecture notes in economics and mathematical systems. (pp.58-191). Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-642-48318-9_3  

    Jahanshahloo, G. R., Junior, H. V., Hosseinzadeh Lotfi, F., & Akbarian, D. (2007). A new DEA ranking system based on changing the reference set. European Journal of Operational Research, 181(1), 331-337.

    Jozi, S. A., & Majd, N. M. (2014). Health, safety, and environmental risk assessment of steel production complex in central Iran using TOPSIS. Environmental Monitoring and Assessment, 186(10), 6969-6983. https://doi.org/10.1007/s10661-014-3903-6

    Kazemi, J., Dehghan Sanch, K., & Khalilzadeh, M. (2017). Ranking of agricultural production using decision making approach Fuzzy multi-attribute : Case study of West Azarbayjan. Agricultural Economics Research, 9(35), 145-162. In persian. http://jae.marvdasht.iau.ir/article_2519.html  

    Khare, R., Villuri, V. G. K., & Chaurasia, D. (2021). Urban sustainability assessment: The evaluation of coordinated relationship between BRTS and land use in transit-oriented development mode using DEA model. Ain Shams Engineering Journal, 12(1), 107-117. https://doi.org/https://doi.org/10.1016/j.asej.2020.08.012.

    Kyrgiakos, L. S., Vlontzos, G., & Pardalos, P. M. (2021). Ranking EU agricultural sectors under the prism of alternative widths on window DEA. Energies, 14(4). 1021.  https://doi.org/10.3390/en14041021   

    Lai, P. L., Potter, A., Beynon, M., & Beresford, A. (2015). Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique. Transport Policy, 42, 75-85. https://doi.org/https://doi.org/10.1016/j.tranpol.2015.04.008  

    Lee, H. C., & Chang, C. T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews, 92, 883-896. https://doi.org/https://doi.org/10.1016/j.rser.2018.05.007

    Lo Storto, C. (2016). Ecological efficiency based ranking of cities: A combined DEA cross-efficiency and Shannon’s Entropy Method. Sustainability, 8(2), 124-137. https://doi.org/10.3390/su8020124

    Lotfi, F. H., Fallahnejad, R., & Navidi, N. (2011). Ranking efficient units in DEA by using TOPSIS method. Applied Mathematical Sciences, 5(17), 805-815.

    Malana, N. M., & Malano, H. M. (2006). Benchmarking productive efficiency of selected wheat areas in Pakistan and India using data envelopment analysis. Irrigation and Drainage, 55(4), 383-394. https://doi.org/10.1002/ird.264

    Mehta, K., Sharma, R., & Vyas, V. (2019). Efficiency and ranking of sustainability index of India using DEA-TOPSIS. Journal of Indian Business Research, 11(2), 179-199. https://doi.org/10.1108/JIBR-02-2018-0057

    Ministry of Agriculture-Jahad of Iran (2020). Statistics of crop production. Retrived from: https://maj.ir/page-amar/FA/65/form/pId28830    

    Naderi Mahdei, K., Fotros, M. H., & Esfahani, S. M. J. (2015). Investigation relationship between social capital and efficiency (case study: Saffron producers of Ferdows county). Journal of Research and Rural Planning, 4(2), 21-34. In persian. https://doi.org/10.22067/jrrp.v4i2.33954

    Najafi, P., Fehresti- Sani, M., Nazari, M. R., & Neshat, A. (2020). Efficiency estimation and ranking of Iranian sugar beet producers. Agricultural Economics and Development, 28(111), 125-145. In persian. https://doi.org/10.30490/aead.2020.252671.0

    Peykani, P., Rahmani, D., Gheidar-Kheljani, J., Jabbarzadeh, A., & Gavareshki, M. (2021). A novel ranking method based on Uncertain DEA Model. . 2nd International Conference on Challenges and New Solutions in Industrial Engineering and Management and Accounting, Damghan, Iran, 2021, Iranian Operations Research Society.

    Podinovski, V., & Bouzdine-Chameeva, T. (2021). Optimal solutions of multiplier DEA models. Journal of Productivity Analysis, 56. 45-68. https://doi.org/10.1007/s11123-021-00610-3

    Rakhshan, S. A. (2017). Efficiency ranking of decision making units in data envelopment analysis by using TOPSIS-DEA method. Journal of the Operational Research Society, 68(8), 906-918.

    Rejab, E. N., Haridan, N. A., Nizam, N. E. N. S., & Rodzi, Z. M. (2021). The TOPSIS of different ideal solution and distance formula of fuzzy soft set in Multi-Criteria Decision Making. International Journal of Academic Research in Economics and Managment and Sciences, 10(2), 87-91.  https://doi.org/10.6007/IJAREMS/v10-i2/10063  

    Sargazi, A. R., Sabouhi, M., & Nader, H. (2014). Ranking of farm units using data envelopment analysis (DEA) approach and analytic hierarchy process (AHP): A case study of Sistan region. Agricultural Economics and Development, 22(1), 107-128. In persian.

    Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73-105.‏

    Shahnavazi, A. (2017a). Determining the efficiency of Iran’s provinces in onion production: Application of data envelopment analysis. Agricultural Economics Research, 9(33), 145-164. In persian http://jae.miau.ac.ir/article_2185_2aaf47a086c3552586f01df1bde1be66.pdf

    Shahnavazi, A. (2017b). Determining the efficiency rank of irrigated crops in Iranian agricultural sector. Iranian Journal of Agricultural Economics and Development Research, 48(2), 227-240. In persisn. https://doi.org/10.22059/ijaedr.2017.62742  

    Shahnavazi, A. (2020). Evaluation of efficiency and profitability of potato cultivation in Iran. Agricultural Economics Research, 12(47), 151-188. In persisn. http://jae.miau.ac.ir/article_4203.html

    Singaravel, B., & Selvaraj, T. (2015). Optimization of machining parameters in turning operation using combined TOPSIS and AHP method. Tehnicki Vjesnik, 22(6), 1475-1480.

    Tavana, M., Toloo, M., Aghayi, N., & Arabmaldar, A. (2021). A robust cross-efficiency data envelopment analysis model with undesirable outputs. Expert Systems with Applications, 167, 114117. https://doi.org/https://doi.org/10.1016/j.eswa.2020.114117

    Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509. https://doi.org/10.1016/S0377-2217(99)00407-5

    Tran, T. H., Mao, Y., Nathanail, P., Siebers, P. O., & Robinson, D. (2019). Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis. Omega, 85, 156-165. https://doi.org/10.1016/j.omega.2018.06.008

    Ullah, A., Silalertruksa, T., Pongpat, P., & Gheewala, S. H. (2019). Efficiency analysis of sugarcane production systems in Thailand using data envelopment analysis. Journal of Cleaner Production, 238, 117877. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.117877   

    1. (2006). General assembly. sixtieth session Agenda item 52. Resolution adopted by the general assembly on 22 December 2005. Retrived from: https://undocs.org/en/A/RES/60/191

    Varatharajulu, M., Duraiselvam, M., Kumar, M. B., Jayaprakash, G., & Baskar, N. (2021). Multi criteria decision making through TOPSIS and COPRAS on drilling parameters of magnesium AZ91. Journal of Magnesium and Alloys. In Press, Corrected Proof. https://doi.org/https://doi.org/10.1016/j.jma.2021.05.006.

    Venkata Subbaiah, K., Chandra Shekhar, N., & Kandukuri, N. (2014). Integrated DEA/TOPSIS approach for the evaluation and ranking of engineering education institutions–a case study. International Journal of Management Science and Engineering Management, 9(4), 249-264.

    Wang, Y. M., & Luo, Y. (2006). DEA efficiency assessment using ideal and anti- ideal decision making units. Applied Mathematics and Computation, 173(2), 902-915. https://doi.org/https://doi.org/10.1016/j.amc.2005.04.023

    Wijesinha-Bettoni, R., & Mouillé, B. (2019). The contribution of potatoes to global food security, nutrition and healthy diets. American Journal of Potato Research, 96, 1-19. https://doi.org/10.1007/s12230-018-09697-1

    Winter, J. C. F., Gosling, S. D., & Potter, J. (2016). Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological Methods, 21(3), 273-290.   https://doi.org/10.1037/met0000079   

    Wood, R., Stadler, K., Simas, M., Bulavskaya, T., Giljum, S., Lutter, S., & Tukker, A. (2018). Growth in environmental footprints and environmental impacts embodied in trade: Resource efficiency indicators from EXIOBASE3. Journal of Industrial Ecology, 22(3), 553-564. https://doi.org/https://doi.org/10.1111/jiec.12735

    Yoon, K. P., & Kim, W. K. (2017). The behavioral TOPSIS expert systems with applications, 89, 266-272. https://doi.org/https://doi.org/10.1016/j.eswa.2017.07.045

    Zahedi- Seresht, M., Khosravi, S., Jablonsky, J., & Zykova, P. (2021). A data envelopment analysis model for performance evaluation and ranking of DMUs with alternative scenarios. Computers & Industrial Engineering, 152, 107002. https://www.sciencedirect.com/science/article/abs/pii/S0360835220306720

    Zamani, P. (2017). Sensitivity in ranking for perturbations of data in DEA. International Journal of Data Envelopment Analysis, 5(1), 1183-1192.

    Zheng, H., Si, D., Wang, W., & Wang, R. (2018). Quantitative entropy weight TOPSIS evaluation of sustainable Chinese wind power developments. Mathematical Problems in Engineering, 2018, 6965432- 6965439. https://doi.org/10.1155/2018/6965439.  

    Zheng, X. B., & Park, N. K. (2016). A Study on the efficiency of container terminals in Korea and China. The Asian Journal of Shipping and Logistics, 32(4), 213-220. https://doi.org/https://doi.org/10.1016/j.ajsl.2016.12.004