Management of energy consumption and greenhouse gas emissions using the optimal farm scale: Evidence from wheat production in South Khorasan Province

Document Type : Research Paper

Author

Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, I. R. Iran

Abstract

The need for sustainable resource management is increasingly urgent. A prerequisite for achieving sustainable agriculture is the use of production resources more efficiently. In this study, by combining Data Envelopment Analysis (DEA) using environmental and economic indices, the effect of optimal farm scale on the improvement of these indices was investigated. Data were obtained from 136 farmers using a questionnaire and face-to-face interviews. The mean technical efficiency, pure technical efficiency and scale efficiency were estimated to be 0.76, 0.89 and 0.85; respectively, while the benefit-to-cost ratio was found to be 1.22. Results indicated that if the resources were used efficiently on an optimum scale, the emission and energy use could be reduced to 976.33 kg CO2eq ha-1 and 15391 MJ ha-1. 37.73 % of the energy savings, respectively. Also, 35.6% of greenhouse gas emission reductions were related to the optimal farm scale. Furthermore, the contribution of the optimal scale in improving the benefit-to-cost ratio and energy use efficiency was found to be 12.5 and 16.23%, respectively. The results showed that the optimum scale of agricultural activities was a crucial factor in saving energy and reducing greenhouse gas emissions in wheat production in eastern Iran. Therefore, as local farms in the studied region mostly were small-scale, fragmented and scattered, land integration and promotion of activities at the optimal production scale are recommended as important steps in reducing environmental side-effects and increasing farmers’ profitability.

Keywords


Article Title [Persian]

مدیریت مصرف انرژی و انتشار گازهای گلخانه ای با استفاده از مقیاس بهینه مزرعه: شواهدی از تولید گندم در استان خراسان جنوبی

Author [Persian]

  • سید محمد جعفر اصفهانی
مؤسسه پژوهش های برنامه ریزی ،اقتصاد کشاورزی و توسعه روستایی، تهران، ج. ا. ایران
Abstract [Persian]

نیاز به مدیریت پایدار منابع یک ضرورت در حال افزایش است. استفاده کارآمدتر از منابع تولید، پیش نیاز دستیابی به کشاورزی پایدار است. در این تحقیق با ترکیب تحلیل پوششی داده ها  با استفاده از شاخص های زیست محیطی و اقتصادی، تأثیر مقیاس بهینه مزرعه بر  بهبود این شاخص­ها بررسی شد. داده‌های مورد نیاز از ۱۳۶ کشاورز با استفاده از روش پرسشنامه و مصاحبه چهره‌به‌چهره به دست آمد. نتایج مطالعه نشان داد میانگین کارایی ­فنی، کارایی­ فنی خالص و کارایی­ مقیاس به ترتیب 0/76، 0/89 و 0/85، و نسبت فایده به هزینه 1/2 بود. نتایج نشان داد که در صورت استفاده کارآمد از منابع در مقیاس بهینه مزرعه، انتشار گازهای گلخانه­ای و مصرف انرژی را می توان به ترتیب به 976 کیلوگرم  CO2eq و  15391/77 مگاژول در هکتار کاهش داد؛ 37/73 درصد از صرفه جویی مصرف انرژی و 35/6 درصد از کاهش انتشار گازهای گلخانه ­ای  به مقیاس بهینه مزرعه مربوط بود. علاوه بر این، سهم مقیاس بهینه در بهبود نسبت فایده به هزینه و کارایی مصرف انرژی به ترتیب 12/5 و 16/23 درصد بود. نتایج نشان داد که مقیاس بهینه مزرعه یکی از عوامل مهم در صرفه‌جویی مصرف انرژی و کاهش انتشار گازهای گلخانه‌ای تولید گندم در شرق ایران بود. بنابراین، از آنجا که اکثر مزارع در منطقه مورد مطالعه در مقیاس کوچک و پراکنده بودند، یکپارچه‌سازی اراضی و ترویج فعالیت در مقیاس بهینه تولید به عنوان مهم‌ترین گام در کاهش اثرات جانبی زیست‌محیطی و افزایش سودآوری کشاورزان توصیه می‌شود. 

Keywords [Persian]

  • انتشار گازهای گلخانه‌ای
  • کارایی مصرف انرژی
  • کارایی مقیاس
  • گندم
Amini, F., Shfizadeh, M., Saber Fattahi, L., Tavanpour, M., Soleymanpour, P., Farmad, M., & Gol Gharramani, N. (2020). Energy balance sheet of 2018. In. Tehran: Ministry of Energy of Iran. Retrewied from:  https://isn.moe.gov.ir/%D8%A8%D8%AE%D8%B4-%D8%A8%D8%B1%D9%82-%D9%88-%D8%A7%D9%86%D8%B1%DA%98%D9%8A/%D8%B9%D9%85%D9%84%D9%83%D8%B1%D8%AF/%D8%AA%D8%B1%D8%A7%D8%B2%D9%86%D8%A7%D9%85%D9%87-%D8%A7%D9%86%D8%B1%DA%98%D9%8A
Ansari, R., Liaqat, M. U., Khan, H. I., & Mushtaq, S. (2018). Energy efficiency analysis of wheat crop under different climate- and soil-based irrigation schedules. Proceedings, 2(5), 184-190.
Azizi, H., & Ajirlu, S. F. (2010). Measurement of overall performances of decision-making units using ideal and anti-ideal decision-making units. Computers & Industrial Engineering ., 59(3), 411-418. https://doi.org/10.1016/j.cie.2010.05.013
Azizi, H., & Wang, Y. M. (2013). Improved DEA models for measuring interval efficiencies of decision-making units. Measurement, 46(3), 1325-1332. https://doi.org/https://doi.org/10.1016/j.measurement.2012.11.050
Banaeian, N., Omid, M., & Ahmadi, H. (2011). Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management, 52(2), 1020-1025. https://doi.org/https://doi.org/10.1016/j.enconman.2010.08.030.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment Analysis. Management Science, 30(9), 1078-1092. https://EconPapers.repec.org/RePEc:inm:ormnsc:v:30:y:1984:i:9:p:1078-1092
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/https://doi.org/10.1016/0377-2217(78)90138-8
Deshpande, M. V. (2019). Chapter 3 - Nanobiopesticide perspectives for protection and nutrition of plants. In O. Koul (Ed.), Nano-biopesticides today and future perspectives (pp. 47-68). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-815829-6.00003-6
Ebrahimi, R., & Salehi, M. (2014). Investigation of CO2 emission reduction and improving energy use efficiency of button mushroom production using data envelopment analysis. Journal of Cleaner Production, 112-119.
 https://doi.org/10.1016/j.jclepro.2014.02.032
Elsoragaby, S., Yahya, A., Mahadi, M. R., Nawi, N. M., & Mairghany, M. (2019). Energy utilization in major crop cultivation. Energy, 173, 1285-1303. https://doi.org/https://doi.org/10.1016/j.energy.2019.01.142
Esfahani, S. M. J., Naderi Mahdei, K., Saadi, H., & Dourandish, A. (2017). Efficiency and sustainability of silage corn production by data envelopment analysis and multi-functional ecological footprint: Evidence from Sarayan County, Iran. Journal of Agricultural Science and Technology,19(7), 1453-1468. http://jast.modares.ac.ir/article-23-5649-en.html
FAO. (2020). Emissions due to agriculture. Global, regional and country trends 2000–2018 (FAOSTAT Analytical Brief Series, Issue. Retrewied from:  https://www.fao.org/3/cb3808en/cb3808en.pdf
Gökdoğan, O., & Sevİm, B. (2016). Determination of energy balance of wheat production in Turkey: A case study of Eskil district. Tekirdağ Ziraat Fakültesi Dergisi, 13(4), 36-43.
Heidari, M. D., Omid, M., & Mohammadi, A. (2012). Measuring productive efficiency of horticultural greenhouses in Iran: A data envelopment analysis approach. Expert Systems with Applications, 39, 1040-1045. https://doi.org/10.1016/j.eswa.2011.07.104
Hesampour, R., Hassani, M., Hanafiah, M. M., & Heidarbeigi, K. (2021). Technical efficiency, sensitivity analysis and economic assessment applying data envelopment analysis approach: A case study of date production in Khuzestan State of Iran. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/https://doi.org/10.1016/j.jssas.2021.08.003 (In Press)
Houshyar, E., Dalgaard, T., Tarazkar, M. H., & Jørgensen, U. (2015). Energy input for tomato production what economy says, and what is good for the environment. Journal of Cleaner Production, 89, 99-109.
Imran, M., & Ozcatalbas, O. (2021). Optimization of energy consumption and its effect on the energy use efficiency and greenhouse gas emissions of wheat production in Turkey. Discover Sustainability, 2(1), 28-41. https://doi.org/10.1007/s43621-021-00035-w
Imran, M., Özçatalbaş, O., & Bashir, M. K. (2020). Estimation of energy efficiency and greenhouse gas emission of cotton crop in South Punjab, Pakistan. Journal of the Saudi Society of Agricultural Sciences, 19(3), 216-224. https://doi.org/https://doi.org/10.1016/j.jssas.2018.09.007
Jiang, W., Zhu, A., Wang, C., Zhang, F., & Jiao, X. (2021). Optimizing wheat production and reducing environmental impacts through scientist–farmer engagement: Lessons from the North China Plain. Food and Energy Security, 10(1), e255.
Karimi, P., Qureshi, A. S., Bahramloo, R., & Molden, D. (2012). Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran. Agricultural Water Management, 108, 52-60.
Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Shariati, H. M., Anuar, N. B., & Kiah, M. L. M. (2015). Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner Production, 86, 67-77.
Lal, R. (2004). Carbon emission from farm operations. Environment ]nternational, 30(7), 981-990.
Laso, J., Hoehn, D., Margallo, M., García-Herrero, I., Batlle-Bayer, L., Bala, A., Fullana-i-Palmer, P., Vázquez-Rowe, I., Irabien, A., & Aldaco, R. (2018). Assessing energy and environmental efficiency of the Spanish agri-food system using the LCA/DEA methodology. Energies, 11(12), 3395
Li, X., Takahashi, T., Suzuki, N., & Kaiser, H. M. (2011). The impact of climate change on maize yields in the United States and China. Agricultural Systems, 104(4), 348-353.
Maciel, V. G., Zortea, R. B., da Silva, W. M., de Abreu Cybis, L. F., Einloft, S., & Seferin, M. (2015). Life cycle inventory for the agricultural stages of soybean production in the state of Rio Grande do Sul, Brazil. Journal of Cleaner Production, 93, 65-74.
Ministry of Agriculture-Jahad (2020). Annual agricultural statistics. Tehran, Iran. Retrewied from: www.maj.ir
 
Mobtaker, H. G., Akram, A., & Keyhani, A. (2012). Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development, 16(1), 84-89.
Mobtaker, H. G., Keyhani, A., Mohammadi, A., Rafiee, S., & Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems & Environment, 137(3-4), 367-372.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S. H., & Nonhebel, S. (2014). Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews, 30, 724-733. https://doi.org/https://doi.org/10.1016/j.rser.2013.11.012
Moradi, M., Nematollahi, M., Pishgar-Komleh, S., & Rajabi, M. (2018). Comparison of energy consumption of wheat production in conservation and conventional agriculture using DEA. Environmental Science and Pollution Research, 25, 35200-35209. https://doi.org/10.1007/s11356-018-3424-x
Mostashari-Rad, F., Nabavi-Pelesaraei, A., Soheilifard, F., Hosseini-Fashami, F., & Chau, K.W. (2019). Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran. Energy, 186, 115845. https://doi.org/https://doi.org/10.1016/j.energy.2019.07.175
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Mobtaker, H. G. (2014). Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311-317.
Nguyen, T. L. T., & Hermansen, J. E. (2012). System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied Energy, 89(1), 254-261.
https://doi.org/https://doi.org/10.1016/j.apenergy.2011.07.023
Omid, M., Ghojabeige, F., Delshad, M., & Ahmadi, H. (2011). Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis. Energy Conversion and Management, 52(1), 153-162.
Ordikhani, H., Parashkoohi, M. G., Zamani, D. M., & Ghahderijani, M. (2021). Energy-environmental life cycle assessment and cumulative exergy demand analysis for horticultural crops (Case study: Qazvin province). Energy Reports, 7, 2899-2915. https://doi.org/https://doi.org/10.1016/j.egyr.2021.05.022
Pishgar Komleh, S., Keyhani, A., Rafiee, S., & Sefeedpary, P. (2011). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy, 36(5), 3335-3341.
Popp, A., Lotze-Campen, H., & Bodirsky, B. (2010). Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change, 20(3), 451-462.
Poveda, A. C., Carvajal, J. E. M., & Pulido, N. R. (2019). Relations between economic development, violence and corruption: A nonparametric approach with DEA and data panel. Heliyon, 5(4), e01496. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01496
Powar, R. V., Mehetre, S. A., Patil, P. R., Patil, R. V., Wagavekar, V. A., Turkewadkar, S. G., & Patil, S. B. (2020). Study on energy use efficiency for sugarcane crop production using the data envelopment analysis (DEA) Technique. Journal of Biosystems Engineering, 45(4), 291-309. https://doi.org/10.1007/s42853-020-00070-x
Salehi, M., Ebrahimi, R., Maleki, A., & Mobtaker, H. G. (2014). An assessment of energy modeling and input costs for greenhouse button mushroom production in Iran. Journal of Cleaner Production, 64, 377-383.
Samavatean, N., Rafiee, S., Mobli, H., & Mohammadi, A. (2011). An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renewable Energy, 36(6), 1808-1813.
Šarauskis, E., Masilionytė, L., Juknevičius, D., Buragienė, S., & Kriaučiūnienė, Z. (2019). Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation. Energy, 172, 1151–1160.
doi: https://doi.org/10.1016/j.energy.2019.02.067
Singh, G., Singh, P., Sodhi, G. P. S., & Tiwari, D. (2021). Energy auditing and data envelopment analysis (DEA) based optimization for increased energy use efficiency in wheat cultivation (Triticum aestium L.) in north-western India. Sustainable Energy Technologies and Assessments, 47, 101453. https://doi.org/https://doi.org/10.1016/j.seta.2021.101453
Singh, P., Singh, G., & Sodhi, G. (2019). Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India. Energy, 181, 18-28.
Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133(3-4), 247-266.
Soltani, A., Rajabi, M., Zeinali, E., & Soltani, E. (2013). Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy, 50, 54-61.
Sriprapakhan, P., Artkla, R., Nuanual, S., & Maneechot, P. (2021). Economic and ecological assessment of integrated agricultural bio-energy and conventional agricultural energy frameworks for agriculture sustainability. Journal of the Saudi Society of Agricultural Sciences, 20(4), 227-234.
Tabatabaie, S. M. H., Rafiee, S., Keyhani, A., & Ebrahimi, A. (2013a). Energy and economic assessment of prune production in Tehran province of Iran. Journal of Cleaner Production, 39, 280-284.
Tabatabaie, S. M. H., Rafiee, S., Keyhani, A., & Heidari, M. D. (2013b). Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran. Renewable Energy, 51, 7-12.
Taghavifar, H., & Mardani, A. (2015). Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial Neural Network. Journal of Cleaner Production, 87, 159-167.
Taghinazhad, J., Vahedi, A., & Ranjbar, F. (2019). Economic assessment of energy consumption and greenhouse gas emissions from wheat production in Ardabil Provience. Environmental Sciences, 17(3), 137-150.
Taki, M., Abdi, R., Akbarpour, M., & Ghasemi Mobtaker, H. (2013). Energy inputs - Yield relationship and sensitivity analysis for tomato greenhouse production in Iran. Journal of Agricultural Engineering Research, 15, 59–67.
Unakıtan, G., & Aydın, B. (2018). A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in thrace region. Energy, 149, 279-285. https://doi.org/10.1016/j.energy.2018.02.033
Vahedi, A. (2020). An analysis and optimization of energy consumption for irrigated wheat production using data envelopment approach (case study in Alborz Province). Agricultural Mechanization and Systems Research, 20(73), 173-192.
https://doi.org/10.22092/erams.2019.125883.1306
Yilmaz, I., Akcaoz, H., & Ozkan, B. (2005). An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30(2), 145-155.
Yousefi, M., Damghani, A. M., & Khoramivafa, M. (2014a). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of The Total Environment, 493, 330-335.
Yousefi, M., Khoramivafa, M., & Mondani, F. (2014b). Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment, 92, 501-505.
Yuan, S., Peng, S., Wang, D., & Man, J. (2018). Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China. Energy, 160, 184-191.
Zangeneh, M., Omid, M., & Akram, A. (2010). A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy, 35(7), 2927-2933.
Zhang, W., Qian, C., Carlson, K. M., Ge, X., Wang, X., & Chen, X. (2021). Increasing farm size to improve energy use efficiency and sustainability in maize production. Food and Energy Security, 10(1), e271. https://doi.org/https://doi.org/10.1002/fes3.271
Ziaei, S., Mazloumzadeh, S., & Jabbary, M. (2015). A comparison of energy use and productivity of wheat and barley (case study). Journal of the Saudi Society of Agricultural Sciences, 14(1), 19-25.