Seed germination prediction of osmotic-stressed safflower (Carthamus tinctorius L.) at different temperatures using hydrotime analysis

Document Type : Research Paper


1 Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, I. R. Iran

2 Department of Crop and Horticultural Science Research, Agricultural Research, Education and Extension Organization (AREEO), Fars Agricultural and Natural Resources Research and Education Center, Shiraz, I. R. Iran


The hydrotime analysis can predict the germination of plants at reduced water potential (ψ). The effects of reduced ψ on seed germination properties in three safflower cultivars including Padideh, Faraman and Isfahan cultivars at 10, 20 and 30 ºC were analyzed using the hydrotime model. Five ψ values (0, -0.3, -0.6, -0.9 and -1.2 MPa) prepared in polyethylene glycol 6000 (PEG) solutions were used in the experiment. The results indicated that all three tested cultivars had the highest germination rate at 30º C and better tolerance to osmotic stress at 20º C. At 20º C, Faraman cultivar had the lowest medium base water potential [ψb(50)]. The standard deviation of ψbψb) among cultivars and temperatures could be as high as 0.52 MPa for the Faraman cultivar at 20º. Three tested cultivars had statistically different hydrotime constant (θH) at 10º C. The lowest ψb(50) for achieving 50% germination at 10º C was seen in the Isfahan cultivar, and at either 20º C or 30º C was seen in Faraman and Padideh cultivars. The suppressing effect of drought stress on seed germination was greater in Padideh and Faraman cultivars than that in the Isfahan cultivar. Overall, applying of hydrotime model allowed identifying osmotic stress-tolerant cultivars such as Isfahan during germination; and which might be helpful to seed germination prediction and providing more accurate information for sowing time of safflower.
Abbreviations: ψ (water potential); PEG (polyethylene glycol); ψb(50) (medium base water potential); θH (hydrotime constant); σψb (standard deviation of ψb); MGT (mean germination time); FGP (final germination percentage).


Article Title [فارسی]

پیش‌بینی جوانه‌زنی بذر گلرنگ در شرایط تنش اسمزی و درجه حرارت‌های مختلف با استفاده از تحلیل هیدروتایم

Authors [فارسی]

  • سید مجتبی موسوی 1
  • احسان بیژن زاده 1
  • زهرا زینتی 1
  • لیلا نظری 2
1 بخش اگرواکولوژی دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، شیراز، ج. ا. ایران
2 بخش تحقیقات زراعی و باغی، مرکز تحقیقات کشاورزی و منابع طبیعی فارس، سازمان تحقیقات آموزش و ترویج کشاورزی فارس، شیراز، ج. ا. ایران
Abstract [فارسی]

- تحلیل هیدروتایم، قادر به پیش‌بینی روند جوانه‌زنی با کاهش پتانسیل آب (ψ) می‌باشد. اثرات کاهش پتانسیل آب روی جوانه‌زنی بذر در سه رقم گلرنگ شامل رقم های پدیده، فرامان و اصفهان در دمای 10، 20 و 30 درجه سانتی‌گراد از طریق مدل هیدروتایم واکاوی شد. در این آزمایش پنج پتانسیل آب (ψ) (0، -0/3، -0/6، 0/9، -1/2- مگاپاسکال) که در محلول‌های پلی‌اتیلن گلیکول  6000 (PEG) تهیه شدند استفاده شد. . نتایج نشان داد که هر سه رقم مورد آزمایش، دارای بیشترین سرعت جوانه‌زنی در دمای 30 درجه‌ی سانتی‌گراد و تحمل بهتر تنش خشکی در دمای 20 درجه  سانتی­گراد بودند. در دمای 20 درجه‌ی سانتی‌گراد، رقم فرامان دارای کم‌ترین پتانسیل آب‌پایه متوسط ψb(50)   بود. در میان ارقام و دما های مختلف، رقم فرامان دارای بیشترین انحراف معیار  ψbψb) به میزان 0/52 مگاپاسکال در دمای 20 درجه سانتیگراد ­بود. ثابت هیدروتایم (θH)  در دمای 10 درجه بین سه رقم مورد آزمایش به طور معنی­داری متفاوت بود. پایین‌ترینψb(50)  برای دست‌یابی به جوانه‌زنی 50 درصد در 10 درجه سانتی­گراد، مربوط به رقم اصفهان بود و در دمای 20 یا 30 درجه سانتی­گراد، پایین‌ترین مقدار مربوط به رقم فرامان و پدیده بود. اثر مهارکنندگی تنش خشکی روی جوانه‌زنی بذر در ارقام پدیده و فرامان بیشتر از رقم اصفهان بود. به‌طورکلی، کاربرد مدل هیدروتایم، امکان شناسایی ارقام متحمل به تنش اسمزی مانند رقم اصفهان را در طی جوانه‌زنی فراهم کرده و می‌تواند در پیش‌بینی جوانه‌زنی بذر و ارائه اطلاعات دقیق‌تر در خصوص زمان کاشت گلرنگ سودمند باشد.

Keywords [فارسی]

  • گلرنگ
  • سرعت جوانه‌زنی
  • ثابت هیدروتایم
  • پتانسیل آب
Alom, R., Hasan, M. A., & Islam, M. R. (2016). Germination characters and early seedling growth of wheat (Triticum aestivum L.) genotypes under salt stress conditions. Journal of Crop Science and Biotechnology, 19, 383-392.
Arjenaki, F. G., Dehaghi, M. A., & Jabbari, R. (2011). Effects of priming on seed germination of Marigold (Calendula officinalis). Advance in Environmental Biology, 5, 276-280.
Bakhshandeh, E., Ghadiryan, R., Galeshi, S., & Soltani, E. (2011). Modeling the effects water stress and temperature on seed germination of Soybean (Glycine max L.) and Velvetleaf (Abutilion thephrasti med.). International Journal of Plant Production, 18, 29-47.
Bakhshandeh E., & Gholamhossieni, M. (2019). Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. Journal of Plant Growth Regulation, 38,1402-1411.
Bradford, K. J. (1990). A water relations analysis of seed germination rates. Plant Physiology, 94, 840-849.
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy.  Weed Science, 50, 248-260.
Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437-448.  
Delachiave, M. E. A., & De Pinho, S. Z. (2003). Scarification, temperature and light in germination of Senna occidentalis seed (Caesalpinaceae). Seed Science and Technology, 3, 225-230.
Farzaneh, S., & Soltani, E. (2011). Relationships between hydrotime parameters and seed vigor in sugar beet. Seed Science and Biotechnology, 5, 7–10.
Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321,153-187.
Hu, F. D., & Jones, R. J. (2004). Effects of plant extracts of Bothrichloa pertusa and Urochloa mosambicensis on seed germination and seedling growth of Stylosanthes hamata cv. Verano and Stylosanthes scabra cv.Seca. Australian Journal of Agriculture Research, 48, 1257-1264.
Hussain, M. I., Dionyssia-Angeliki, L., Farooq, M., Nikoloudakis, N., & Khalid, N. (2015). Salt and drought stresses in Safflower: A review. Agronomy for Sustainable Development, 36,1-31.
Kar, G., Kumar, A., & Martha, M. (2007). Water use efficiency and crop coefficients of dry season oilseed crops. Agriculture Water Management, 87, 73-82.
Kebreab, E., & Murdoch, A. J. (1999). Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seed. Journal of Experimental Botany, 50, 655-664.
Khakwani, A. A., Dennett, M. D., & Munir, M. (2011). Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin Journal of Science and Technology, 33,135-142.
Khan, M. A., Gul, B., & Weber, D. J. (2002). Seed germination in relation to salinity and temperature in Sarcobatus vermiculatus. Biologia Plantarum, 45, 133-135.
Khan, M. A., & Ungar, I. A. (1996). Influence of salinity and temperature on the germination of Haloxylon recurvum Bunge ex. Boiss. Annals of Botany, 78, 547-551.
Khodarahmpour, Z. (2011). Effect of drought stress induced by polyethyelen glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. African Journal of Biology, 10, 18222-18227.
Kulkarni, M., & Deshpande, U. (2007). In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. African Journal of Biology, 6, 691-696.
Krichen, K., Ben Mariem, H., & Chaieb, M. (2014). Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. South African Journal of Botany, 94, 210-217.
Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51, 914-916.
Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15-19.
Murillo, A. B., Lopez, A. R., Kaya, C., Larrinaga, M. J., & Flores, H. A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188, 235-247.
Muscolo, A., Sidari, M., Anastasi, U., Santonoceto, C., and Maggio, A. (2014). Effect of PEG- induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions, 9, 354-363.
Mwale, S. S., Hamusimbi, C., & Mwansa, K. (2003). Germination, emergence and growth of sunflower (Helianthus annuus L.) in response to osmotic seed priming. Seed Science and Technology, 31, 199-206.
Okcu, G, Kaya, M. D., & Atak, M. (2005). Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry, 29, 237-242.
Orchard, T. (1977). Estimating the parameters of plant seedling emergence. Seed Science and Technology, 5, 61-69.
Ostadian Bidgoli, R., Balouchi, H., Soltani, E. & Moradi, A. (2018). Effect of temperature and water potential on Carthamus tinctorius L. seed germination: Quantification of the cardinal temperatures and modeling using hydrothermal time. Industrial Crops & Products, 113, 121-127.
Pahlevani, M., Ghaderi, M., Bagmohamadi, H., & Razavi, S. E. (2012). The effects of drought stress and Pythium ultimum on seed germination and seedling growth in safflower. Journal of Plant Production,19, 89-104.
Patane C, Cavallaro, V., Avola, G., & D’Agosta, G. (2006). Seed respiration of sorghum [Sorghum bicolor (L.) Moench] during germination as affected by temperature and osmo conditioning. Seed Science Research, 16, 25-260.
Patane, C., Saita, A., & Sortino, O. (2012). Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. Journal of Agronomy and Crop Science, 199, 30-37.
Patane, C., Saita, A., Tubeileh, A., Cosentino, S. L., & Cavallaro, V. (2016). Modeling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced drought stress through the hydrotime analysis. Acta Physiologia Plantarum, 38, 115-127.
Ren, J., & Tao, L. (2004). Effects of different pre-sowing seed treatments on germination of 10 Calligonum species. Forest Ecology and Management, 195, 291-300.
Rozema, J. (1975). The influence of salinity, inundation and temperature on germination of some halophytes and nonhalophytes. Oecologia Plantrum, 10, 341-353.
Shaheen, R., & Hood- Nowotny, R. (2005). Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Science, 168, 901-909.
Smok, M.A., Chojnowski, M., Corbineau, F. and Côme, D. (1993) Effects of osmotic treatment on sunflower seed germination in relation with temperature and oxygen. pp 1033–1038 in Côme, D. and Corbineau, F. (Eds). Fourth International Workshop on Seeds. Basic and applied aspects of seed biology, Vol. 3, Paris, ASFIS.
Soltani, E., & Farzaneh, S. (2014). Hydrotime analysis for determination of seed vigor in cotton. Seed Science and Technology, 42, 260–273.
Steinmaus, S. J., Prather, T. S., & Holt, J. S. (2000). Estimation of base temperatures for nine weed species. Journal of Experimental Botany, 51, 275-286.
Tabatabaei, S. A., & Ansari, O. (2017). Predicting seed germination of safflower cultivars using hydrotime model. Cercetari Agronomice in Moldova, 169, 79-87.
Taiz, L., & Zeiger, E. (2010). Plant Physiology (5th eds). Massachusetts: Sinauer Associates Inc. Publishers.
Torabi, B., Soltani, E., Archontoulis, S.V., & Rabii, A. (2016). Temperature and water potential effects on Carthamus tinctorius L. seed germination: Measurements and modeling using hydrothermal and multiplicative approaches. Brazilian Journal of Botany, 39, 427–436.
Toscano, S., Romano, D., Tribulato, A., & Patane, C. (2017). Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiologia Plantarum, 39,184-191.
Tuberosa R., & Salvi, S. (2006). Genomics based approaches to improve drought tolerance of crops. Trends in Plant Science, 11, 15-19.
Wu, C., Wang, Q., Xie, B., Wang, Z., Cui, J., & Hu, T. (2011). Effects of drought and salt stress on seed germination of three leguminous species. African Journal of Biology, 10, 17954-17961.