Selection of lentil (Lens culinaris medik.) genotypes by assessing phenological, morphological, yield and yield attributes

Document Type : Research Paper


1 Legume Department, Research Centre for Plant Sciences, Ferdowsi University of Mashhad, I. R. Iran

2 Legume Department, Research Centre for Plant Sciences, Ferdowsi University of Mashhad, I. R. Iran & Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, I. R. Iran

3 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, I. R. Iran

4 Shirvan Higher Education Complex, I. R. Iran


It is crucial to benefit from the lentil genetic resources to select them for greater economic yield and take advantage of the maximum production potential by local germplasms. Therefore, this study aimed to evaluate the phenological, morphological characteristics, yield, and yield components of 15 lentil genotypes in the Research Field, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in February 2019. The experiment was carried out based on completely randomized blocks with three replications. According to the results, the MLC47 genotype was superior to other genotypes with a plant height of 44.7 cm and 4.4 branches per plant. In addition, the MLC33 genotype had the most filled pods with 79.4% fertility, and no significant difference was observed between this genotype and 60% of the entire genotypes in this regard. Moreover, the MLC454 and MLC47 genotypes had the highest seed yield with 133.8 and 125 g seeds per plant, respectively. Cluster grouping and comparison of means of the groups with the total mean showed that the MLC33 and MLC454 genotypes had a higher mean, compared to other genotypes in 69% of the studied traits. So that these two genotypes could be used in future research projects to identify and select the superior lentil genotypes.


Article Title [فارسی]

به‌گزینی ژنوتیپ‌های عدس(.Lens culinaris medik) از طریق ارزیابی خصوصیات فنولوژیکی، مورفولوژیکی، عملکرد و اجزای عملکرد

Authors [فارسی]

  • جعفر نباتی 1
  • احمد نظامی 2
  • علیرضا حسن فرد 3
  • محمد زارع مهرجردی 4
  • مهدی راستگو 3
1 گروه پژوهشی بقولات، پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ج. ا. ایران
2 گروه پژوهشی بقولات، پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ج. ا. ایران و گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ج. ا. ایران
3 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ج. ا. ایران
4 مجتمع آموزش عالی شیروان، شیروان، ج. ا. ایران
Abstract [فارسی]

بهره‌مندی از منابع ژنتیکی عدس جهت به‌گزینی آن‌ها در زمینۀ عملکرد اقتصادی بیشتر و بهره‌گیری از حداکثر پتانسیل تولید از طریق جایگزینی تعداد محدودی از ارقام اصلاح‌ شده با ژرم‌پلاسم بومی امری ضروری است. به همین منظور مطالعۀ حاضر در اواسط بهمن‌ماه 1397 در راستای ارزیابی خصوصیات فنولوژیک، مورفولوژیک، عملکرد و اجزای عملکرد 15 ژنوتیپ عدس در مزرعۀ تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد در قالب طرح بلوک‌های کامل تصادفی با سه تکرار انجام شد. نتایج نشان داد که ژنوتیپ MLC47 با ارتفاع 44/7 سانتی‌متر و تعداد 4/4 شاخه در بوته در مقایسه با سایر ژنوتیپ‌ها برتر بود. ژنوتیپ MLC33 با باروری 79/4 درصد بیش‌ترین غلاف بارور را داشت و 60 درصد از ژنوتیپ‌ها به‌لحاظ آماری با این ژنوتیپ در این صفت تفاوت معنی‌داری نداشتند. همچنین ژنوتیپ‌های MLC454 و MLC47 به ترتیب با 133/8 و 125 گرم دانه در بوته بیش‌ترین عملکرد دانه را داشتند. گروه‌بندی خوشه‌ای و مقایسه میانگین گروه‌ها با میانگین کل نشان داد که ژنوتیپ‌های MLC33 و MLC454 در 69 درصد از صفات مورد بررسی، میانگین بیشتری نسبت به سایر ژنوتیپ‌ها داشتند که می‌توانند در برنامه‌های تحقیقاتی آتی برای شناسایی و به‌گزینی ژنوتیپ‌های برتر عدس مورد استفاده قرار گیرند.

Keywords [فارسی]

  • غلاف بارور
  • منابع ژنتیکی
  • ژرم‌پلاسم داخلی
  • عملکرد دانه
Akdeniz, H., Koc, A., Hosafliglu, I., Hossain, A., Islam, M. S., Hafez, E., & El Sabagh, A. (2019). Evaluation of phenology, growth, yiled and technological characteristics of some winter green lentil (Lens culinaris Medic.) genotypes grown under mediterranean environment. Fresenius Environmental Bulletin, 28(7), 5430-5434.
Alemu, B., Lule, D., Tesfaye, K., & Haileselassie, T. (2018). Interrelationships of quantitative traits and genetic variability of Desi type chickpea genotypes as revealed by agro-morphology and inter simple sequence repeat markers. African Journal of Biotechnology, 17(21), 685-693.
Ballesteros-Rodríguez, E., Martínez-Rueda, C. G., Morales-Rosales, E. J., Estrada-Campuzano, G., & González, G. F. (2019). Changes in number and weight of wheat and triticale
grains to manipulation in source-sink relationship. International Journal of Agronomy, 2019, 1-9.
Barisic, N., Stojković, B., & Tarasjev, A. (2006). Plastic responses to light intensity and planting density in three 
Lamium species. Plant Systematics and Evolution, 262(1-2), 25-36.
Barnabas, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11-38.
Colkesen, M., Idikut, L., Zulkadir, G., Cokkizgin, A., Girgel, U., & Boylu, O. A. (2014). Determination of yield and yield components of various winter lentil genotypes (Lens culinaris Medic.) in kahramanmaras conditions. Turkish Journal of Agricultural and Natural Sciences (Turk Tarım ve Doga Bilimleri Dergisi,), Special Issue: 1, 2014, 1247-1253.
Delahunty, A., Nuttall, J., Nicolas, M., & Brand, J. (2018). Response of lentil to high temperature under variable water supply and carbon dioxide enrichment. Crop and Pasture Science, 69(11), 1103-1112.
Erskine, W., Diekmann, J., Jegatheeswaran, P., Salkini, A., Saxena, M. C., Ghanaim, A., & El Ashkar, F. (1991). Evaluation of lentil harvest systems for different sowing methods and cultivars in Syria. The Journal of Agricultural Science, 117(3), 333-338.
Food and Agriculture Organization Corporate Statistical Database (FAOSTAT), (2019). Food and Agriculture Organization of the United Nations. http:// www. (Accessed: 14 December 2019).
Gaad, D., laouar, M., abdelguerfi, A., & gaboun, F. (2018). Collection and agro morphological characterization of Algerian accessions of lentil (Lens culinaris). Biodiversitas Journal of Biological Diversity, 19(1), 183-193.
Gan, Y. T., Miller, P. R., Liu, P. H., Stevenson, F. C., & McDonald, C. L. (2002). Seedling emergence, pod development, and seed yields of chickpea and dry pea in a semiarid environment. Canadian Journal of Plant Science, 82(3), 531-537.
Giannakoula, A. E., Ilias, I. F., Maksimovic, J. J. D., Maksimović, V. M., & Zivanović, B. D. (2012). The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. Journal of Food Composition and Analysis, 28(1), 46-53.
Gupta, R., Begum, S. N., Islam, M. M., & Alam, M. S. (2012). Characterization of lentil (Lens culinaris M.) germplasm through phenotypic marker. Journal of the Bangladesh Agricultural University, 10(2), 197-204.
Hall, C., Dawson, T. P., Macdiarmid, J. I., Matthews, R. B., & Smith, P. (2017). The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. International Journal of Agricultural Sustainability, 15(2), 124-135.
Hasanfard, A., Rastgoo, M., Darbandi, E. I., Nezami, A., & Chauhan, B. S. (2021). Regeneration capacity after exposure to freezing in wild oat (Avena ludoviciana Durieu.) and turnipweed (Rapistrum rugosum (L.) All.) in comparison with winter wheat. Environmental and Experimental Botany, 181, 1-8.
Karadavut, U. (2009). Path analysis for yield and yield components in lentil (Lens culinaris Medik.). Turkish Journal of Field Crops, 14(2), 97-104.
Ministry of Jihad-e-Agriculture Iran. (2017). Iran Agriculture Statistics. Volume I: Crops Retrieved from
Kayan, N. (2008). Variation for yield components in two winter sown lentil cultivars (Lens culinaris Medic.). Bulgarian Journal of Agricultural Science, 14(5), 460-465.
Nabati, J., Nezami, A., Mirmiran, S. M., Hasanfard, A., Hojjat, S. S., & Bagheri, A. R. (2020). Freezing tolerance in some lentil genotypes under controlled conditions. Seed and Plant Journal, 36(2), 183-205.
Nezami, A., Pouramir, F., Momeni, S., Porsa, H., Ganjeali, A., & Bagheri, A. (2010). Evaluation of phenologic, morphologic and yield characteristics of chickpea germplasms in Ferdowsi University of Mashhad Seed Bank I. Deci type chickpeas. Iranian Journal of Pulses Research. 1(2), 21-36.
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell, D. B., & Travasso, M. I. (2014). Chapter 7: Food security and food production systems. In: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., White, L. L. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on climate change. (pp. 485–533) Cambridge, United Kingdom, and New York, NY, USA: Cambridge University Press.
Sandana, P., & Calderini, D. F. (2019). Crop Science. Source-sink relationships in cereals and legumes. New York, NY: Springer.
Sarker, A., & Kumar, S. (2011). Lentils in production and food systems in west Asia and Africa. Grain Legumes. 57, 46-48.
Sarker, A., Rizvi, A. H., & Singh, M. (2018). Genetic variability for nutritional quality in lentil (Lens culinaris Medikus subsp. culinaris). Legume Research-An International Journal, 41(3), 363-368.
Sehgal, A., Sita, K., Bhandari, K., Kumar, S., Kumar, J., Vara Prasad, P. V., Siddique, K. H. M., and Nayyar, H. (2019). Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant, Cell and Environment, 42(1), 198-211.
Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K. H., & Nayyar, H. (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science, 8, 1776.
Smith, M. R., Rao, I. M., & Merchant, A. (2018). Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in Plant Science, 9, 1-10.
Smykal, P., Coyne, C. J., Ambrose, M. J., Maxted, N., Schaefer, H., Blair, M. W., Berger, J., Greene, S. L., Nelson, M. N., Besharat, N., Vymyslicky, T., Toker, C., Saxena, R. K., Roorkiwal, M., Pandey, M. K., Hu, J., Li, Y. H., Wang, L. X., Guo, Y., Qiu, L. J., Redden, R. J., & Varshney, R. K. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34(1-3), 43-104.
Toklu, F., Biçer, B., & Karaköy, T. (2009). Agro-morphological characterization of the Turkish lentil landraces. African Journal of Biotechnology, 8(17), 4121-4127.
Tsanakas, G. F., Mylona, P. V., Koura, K., Gleridou, A., & Polidoros, A. N. (2018). Genetic diversity analysis of the Greek lentil (Lens culinaris) landrace ‘Eglouvis’ using morphological and molecular markers. Plant Genetic Resources, 16(5), 469-477.
Unkovich, M., Baldock, J., & Forbes, M. (2010). Variability in harvest index of grain crops and potential significance for carbon accounting: Examples from Australian agriculture. In Advances in Agronomy. Cambridge: Academic Press.
Upadhyaya, H. D., Ortiz, R., Bramel, P. J., & Singh, S. (2002). Phenotypic diversity for morphological and agronomic characteristics in chickpea core collection. Euphytica, 123(3), 333-342.
Wanare, S. W. (2015). Stability analysis in chickpea (Cicer arietinum L.) (Doctoral dissertation, MPKY, University library).
White, A. C., Rogers, A., Rees, M., & Osborne, C. P. (2015). How can we make plants grow faster? A source–sink perspective on growth rate. Journal of Experimental Botany, 67(1), 31-45.