Physiological responses of wheat (Triticum aestivum L.) to deficit irrigation and sowing density

Document Type : Research Paper


1 Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, I. R. Iran & Drought Research Center, Shiraz University, Shiraz, I.R. Iran

3 Department of Plant Production and Genetics, College of Agriculture, Shiraz University, Shiraz, I. R. Iran


To evaluate the effect of sowing density (300, 400, 500, 600 and 700 plants/m2) on the growth of wheat under deficit irrigation (100, 75 and 50% crop water requirement, I100, I75 and I50, respectively), an experiment was carried out during 2009 and 2010. In both years, deficit irrigation resulted in a considerable reduction in yield, yield components, leaf area index (LAI) and leaf water potential (Ψw). In contrast, the canopy temperature (CT) significantly increased under deficit irrigation. Furthermore, increasing of sowing density from 300 to 600 plants/m2 resulted in a significant increase in grain yield under I100 and I75. Maximum grain yield as 525.9 and 564.2 g/m2 was obtained in the first and the second years, respectively in sowing density of 600 plants/m2 and I100. This sowing density was also the proper density in I75 and I50 irrigation regimes. Increasing of sowing density reduced 1000-grain weight and grain number per spike and increased spike number per square meter. In the first year, increasing of sowing density from 300 to 600 plants/m2 caused a significant increase in LAI in all irrigation regimes, while in the second year, maximum LAI was observed in 700 plants/m2 sowing density. It was found that increasing of sowing density significantly reduced the Ψw and the CT in both well-watered and deficit irrigation. In conclusion, the results suggest that 600 plants/m2 would be the optimal sowing density under different water conditions. Alleviation of water stress by the increasing sowing density was found to be associated partly with enhanced LAI and reduced CT.


Article Title [Persian]

پاسخ‌های فیزیولوژیکی گندم (.Triticum aestivum L) تحت تأثیر کمبود آب و تراکم گیاه

Authors [Persian]

  • مینا فاتح 1
  • علی اکبر گامکار حقیقی 2
  • علیرضا سپاس خواه 2
  • یحیی امام 3
  • کبری مقصودی 3
1 گروه آبیاری، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
2 گروه آبیاری، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران و مرکز تحقیقات خشکسالی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
3 گروه علوم تولیدات گیاهی و ژنتیک، ، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

 به منظور بررسی تأثیر تراکم بوته (300، 400، 500 ، 600 و 700 بوته در مترمربع) بر رشد و عمکلرد گندم تحت شرایط کمبود آب (100، 75 و 50 درصد نیاز آب زراعی: به ترتیب I100 ، I75 و I50)، این مطالعه در طی سال­های 89-1388 انجام شد. در هر دو سال، کمبود آب منجر به کاهش معنی ­دار عملکرد، اجزای عملکرد، شاخص سطح برگ (LAI) و پتانسیل آب برگ (Ψw) گردید. در مقابل، دمای کانوپی (CT) به طور قابل توجهی در شرایط کمبود آب، افزایش یافت. همچنین افزایش تراکم بوته از 300 به 600 بوته در متر مربع، باعث افزایش معنی­ دار عملکرد دانه در  تیمارهای I100 و I75 شد. بیشترین عملکرد دانه در سال اول و دوم، به ترتیب به میزان 525/9 و 564/2 گرم در متر مربع، در تراکم 600 بوته در متر مربع و رژیم آبیاری I100 بدست آمد. همچنین این تراکم بوته در رژیم های آبیاری I75 و I50، مناسب­ترین تراکم گیاهی بود. افزایش تراکم بوته باعث کاهش وزن هزار دانه و تعداد دانه در سنبله و نیز موجب افزایش تعداد سنبله در متر مربع شد. در سال اول، افزایش تراکم بوته از 300 به 600 بوته در مترمربع باعث افزایش قابل توجه LAI در کلیه رژیم­های آبیاری شد، در حالیکه در سال دوم، حداکثر LAI در تراکم 700 بوته در متر مربع، مشاهده شد. مشخص گردید افزایش تراکم گیاه باعث کاهشΨw  و CT، در هر دو شرایط آبیاری مطلوب و تنش گردید. در نتیجه، بر اساس نتایج، تراکم 600 بوته در متر مربع، تراکم بهینه گیاه در شرایط تنش و غیر تنش پیشنهاد می­ شود. می­توان بیان داشت تعدیل تنش خشکی با افزایش تراکم گیاهی، در ارتباط با افزایش LAI و نیز کاهش CT بوده است.

Keywords [Persian]

  • دمای کانوپی
  • شاخص سطح برگ
  • پتانسیل آب برگ
  • عملکرد
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and drainage. FAO irrigation and drainage paper 56. Rome. Retrieved from
Asemanrafat, M., & Honar, T. (2017). Effect of water stress and plant density on canopy temperature, yield components and protein concentration of red bean (Phaseolus vulgaris L. cv. Akhtar). International Journal of Plant Production, 11, 241-258.
Aspelmeier, S., & Leuschner, C. H. (2006). Genotypic variation in drought response of Silver birch (Betula pendula Roth): Leaf and root morphology and carbon partitioning. Trees Structure and Function, 20, 42-52.
Borg, H., & Grims, D. W. (1986). Depth development of roots wheat time: An empirical description. Transactions - American Society of Agricultural Engineers, 29, 194-197.
Brennan, J. P., Condon, A. G., van Ginkel, M., & Reynolds, M. P. (2007). An economic assessment of the use of hysiological selection for stomatal aperture-related traits in the CIMMYT breeding program. Journal of Agricultural Science, 145, 187-194.
Caterina, G. L., Will, R. E., Turton, D. J., Wilson, D. S., & Zou, C. B. (2013). Water use of Juniperus virginiana trees encroached into mesic prairies in Oklahoma, USA. Ecohydrology, 7, 1124-1134.
Costa, R. C. L., Lobato, A. K. S., Silveira, J. A. G., & Laughinghouse, I. V. (2011). ABA-mediated proline synthesis in cowpea leaves exposed to water deficiency and rehydration. Turkish Journal of Agriculture and Forestry, 35, 309-317.
Dai, X., Xiao, L., Jia, D., Kong, H., Wang, Y., Li, C., Zhang, Y., & He, M. (2014). Increased plant density of winter wheat can enhance nitrogen–uptake from deep soil. Plant and Soil, 384, 141–152.
Eamus, D. (2003). How does ecosystem water balance affect net primary productivity of woody ecosystems? Functional Plant Biology, 30, 187-205.
Endres, L., Silva, J. V., Ferreira, V. M., Ver, G., & Barbosa, D. S. (2010). Photosynthesis and water relations in Brazilian sugarcane. The Open Agriculture Journal, 4, 31-37.
Erocli, L., Lulli, L., Mariotti, M., Masoni, A., & Arduini, I. (2007). Post-anthesis dry matter and nitrogen dynamics in durum wheat. Crop Science, 34, 1443-1451.
Farshi, A. A., Feyen, J., Belmans, C., & Wijngaert, K. D. (1987). Modeling of yield of winter wheat as a function of soil water availability. Agricultural Water Management, 12, 323-339.
Ferrante, A., Savin, R., & Slafer, G. A. (2015). Relationship between fruiting efficiency and grain weight in durum wheat. Field Crops Research, 177, 109-116.
Gendua, P. A., Yamamoto, Y., Miyazaki, A., Yoshida, T., & Wang, Y. (2009). Responses of yielding ability, sink size and percentage of filled grains to the cultivation practices in a Chinese large-panicle-type rice cultivar, Yangdao 4. Plant Production Science, 12, 243-256.
Gonzalez, A., Bermejo, V., & Gimeno, B. S. (2010). Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. Journal of Agricultural Science, 148, 319-328.
Guo, T., Zha, F., Ma, D., Song, X., & Yue, Y. (2007). Effects of plant density on the accumulation and transfer of dry matter and nitrogen and grain yield of two winter wheat cultivars with different spike types. Acta Agriculturae Boreali Sinica, 22, 152-156.
Guttieri, M. J., Stark, J. C., O’Brien, K., & Souza, E. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science, 41, 327-335.
Hakamada, R., Hubbard, R. M., Ferraz, S., Stape, J. L., & Lemos, C. (2017). Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. Southern Forests, 79, 251-257.
Harrington, R. A., Fownes, J. H., & Vitousek, P. M. (2001). Production and resource use efficiencies in N- and P-limited tropical forests: A comparison of responses to long-term fertilization. Ecosystems, 4, 646-57.
Hiltbrunner, J., Streit, B., & Liedgens, M. (2007). Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Research, 102, 163–171.
Honda, A., Pilon, N. A. L., & Durigan, G. (2019). The relationship between plant density and survival to water stress in seedlings of a legume tree Eliane. Acta Botanica Brasilica, 33, 602-606.
Hovenden, M. J., & Vander Schoor, J. K. (2004). Nature vs. nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytologist, 161, 585-94.
HuiJuan, Q., JinCai, L., XueShan, S., Feng Zhen, W., ChengYu, W., & ShengJun, Z. (2009). Effects of plant density and seeding date on accumulation and translocation of dry matter and nitrogen in winter wheat cultivar Lankao Aizao 8. Acta Agronomica Sinica, 35, 124-131.
Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Christophe, A., Pervent, M., Bouteille, M., Stitt, M., & Gibon, Y. (2010). Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. American Society of Plant Biologists, 154, 357-372.
Jin, X., Liua, S., Baret, F., Hemerlé, M., & Comar, A. (2017). Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery Xiuliang. Remote Sensing of Environment, 198, 105-114.
Li, Y., Cui, Z., Ni, Y., Zheng, M., Yang, D., Jin, M., Chen, J., Wang, Z., & Yin, Y. (2016). Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions. PLOS One 11, e0155351.
Maertens, K., Reyns, P., De Clippel, J., & De Baerdemaeker, J. (2003). First experiments on ultrasonic crop density measurement. Journal of Sound and Vibration, 266, 655-665.  
Maghsoudi, K., Emam, Y., & Ashraf, M. (2015). Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany, 39, 625-634.
Maghsoudi, K., Emam, Y., & Ashraf, M. (2016a). Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. Journal of Plant Nutrition, 39, 1194-1203.
Maghsoudi, K., Emam, Y., & Pessarakli, M. (2016b). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39, 1001-1015.
Maghsoudi, K., Emam, Y., Ashraf, M., & Arvin, M. J. (2019). Alleviation of field water stress in wheat cultivars using silicon and salicylic acid applied separately or in combination. Crop and Pasture Science, 70, 36-43.
Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. (2018). P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13, 461-471.
Mansfield, T. J., & Atkinson, C. J. (1990). Stomatal behaviour in water stressed plants, In Alscher R. G., Cumming J. R. (Eds.), Stress responses in plants: Adaptation and acclimation mechanisms (pp. 241–264) New York: Wiley- Liss.
Maroco, J. P., Pereira, J. S., & Chaves, M. M. (1997). Stomatal responses to leaf to air vapour pressure deficit in Sahelian species. Australian Journal of Plant Physiology, 24, 381–387.
Mary, J. G., Jeffrey, C. S., Katherine, O. B., & Edward, S. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science, 41, 327-335.
Morgan, J. M., & Tan, M. K. (1996). Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Australian Journal of Plant Physiology, l23, 803-806.
Munjal, R., & Rana, R. K. (2003). Evaluation of physiological traits in wheat (Triticum aestivum L.) for terminal high temperature tolerance. Proceedings of the Tenth International Wheat Genetics Symposium, Poestum. Italy. Classical and Molecular Breeding, 2, 804-805.
Nakano, H., Morita, S., Kitagawa, H., Wada, H., & Takahashi, M. (2012). Grain yield response to planting density in forage rice with a large number of spikelets. Crop Science, 52, 345-350.
O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D., & Howell, T. A. (2011). Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 98,1523-1535.
Otieno, D. O., Schmidt, M. W. T., Adiku, S., & Tenhunen. J. (2005). Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiology, 25, 361-71.
Otoole, J. C., & Real, J. G. (1986). Estimation of aerodynamic and crop resistance from canopy temperature. Agronomy Journal, 78, 305-310.
Ozturk, A., Caglar, O., & Bulut, S. (2006). Growth and yield response of facultative wheat to winter sowing, freezing sowing and spring sowing at different seeding rates. Journal of Agronomy and Crop Science, 192,10-16.
Pedrol, N., Ramos, P., & Reigosa, M. J. (2000). Phenotypic plasticity and acclimation to water deficits in velvet-grass: A long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. Journal of Plant Physiology, 157, 383-93.
Peters, R. T., & Evett, S. R. (2008). Automation of a center pivot using the temperature-time-threshold method of irrigation scheduling. Journal of Irrigation and Drainage Engineering, 134, 286-290.
Prior, L. D., Bowman, D. M. J. S., & Eamus, D. (2005). Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia. Australian Journal of Botany, 53, 323-35.
Rashid, A., Stark, J. C., Tanveer, A., & Mustafa, T. (1999). Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat. Journal of Agronomy and Crop Science, 182, 231-237.
Razzaghi, F., & Sepaskhah, A. R. (2012). Calibration and validation of four common ET0 estimation equations by lysimeter data in a semi-arid environment. Archives of Agronomy and Soil Science, 58, 303-319.
Reddy, A. R., Chiatanya, K. V., & Vivekanandan, M. (2004). Draught induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202.
Reynolds, M. P., Nagarajan, S., Razzaque, M. A., & OAgeeb, A. A. (2001). Breeding for adaptation to environmental factors, heat tolerance. In Reynolds, M. P., Ortiz-Monasterio, J. I., & McNab, A. (Eds), Application of physiology in wheat breeding, (pp. 124-135) Mexico, D.F.: CIMMYT.
Reynolds, M. P., Singh, R. P., Ibrahim, A., Ageeb, O. A. A., Larque- Saarvedra, A., & Qick, J. S., (1998). Evaluation physiological traits to complement empirical selection for wheat in warm environments. Euphytica, 100, 85-94.
Rontein, D., Basset, G., & Hanson, A. D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering, 4, 49-59.
Saeys, W., Lenaerts, B., Craessaerts, G., & De Baerdemaeker, J. (2009). Estimation of the crop density of small grains using LiDAR sensors. Biosystems Engineering, 102, 22–30.
Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). RGOS8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15, 207-216.
Sinclair, T. R. (2011). Challenges in breeding for yield increase for drought. Trends in Plant Science, 16, 289-293.
Srivastava, A., Srivastava, P., Khobra, R., Sharma, A., Sarlach, R. S., Dogra, A., & Bains, N. S. (2016). Association of morpho-phsiological traits in recombinant inbred population of wheat under rainfed environments. Indian Journal of Ecology, 43, 72-77.
Takeda, T., & Hirota, O. (1971). Relationship between spacing and grain yield of rice plant. Japanese Journal of Crop Science, 40, 381-385.
Tetio-Kagho, F., & Gardner, F. P. (1988). Responses of maize to plant population density. I. Canopy development, light relationships, and vegetative growth. Agronomy Journal, 80, 930-935.
Toillon, J., Fichot, R., Dallé, E., Berthelot, A., Brignolas, F., & Marron, N. (2013). Planting density affects growth and water-use efficiency depending on site in Populus deltoides × P. nigra. Forest Ecology and Management, 304, 345-354.
Toker, C., Canci, H., & Yildirim, T. (2007). Evaluation of perennial wild Cicer species for drought resistance. Genetic Resources and Crop Evolution, 54, 1781-1786.
Wang, D., Yu, Z., & White, P. J. (2013). The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. Field Crops Research, 151, 35- 44.
Whaley, J., Sparkes, D., Foulkes, M., Spink, J., Semere, T., & Scott, R. (2000). The physiological response of winter wheat to reductions in plant density. Annals of Applied Biology, 137, 165-177.
Xu, H. C., Cai, T., Wang, Z. L., & He, M. R. (2015). Physiological basis for the differences of productive capacity among tillers in winter wheat. Journal of Integrative Agriculture, 14, 1958-1970.
Yang, G., Luo, X., Nie, Y., & Zhang, X. (2014). Effects of plant density on yield and canopy micro environment in hybrid cotton. Journal of Integrative Agriculture, 13, 2154-2163.
Yao, X. Q., Chu, J. Z., & Wang, G. Y. (2009). Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiologiae Plantarum, 5, 1031-1036.
Yokota, A., Kawasaki, S., Iwano, M., Nakamura, C., Miyake, C., & Akashi, K. (2002). Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Annals of Botany, 89, 825–832.
Yoshida, S. (1981). Fundamentals of rice crop science. Los Banos, Laguna, Philippines: International Rice Research Institute.
Zhu, X., Gong, H., Chen, G., Wang, S., & Zhang, C. (2005). Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. Journal of Arid Environments, 62, 1-14.