The effect of extraction and isoelectric pH values on functional and thermal properties of tahini meal protein

Document Type : Research Paper

Authors

1 Seed and Plant Improvement Institute, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Former Ph.D student of Department of food science and technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

3 Department of food science and technology, Ferdousi University, Mashhad, Iran

4 Associate professor, Seed and Plant Improvement Institute, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran

5 assistant professor, Department of food science and technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

Abstract

Tahini is an important product of peeled sesame. As a byproduct of oil extraction from tahini, tahini meal (TM) is a valuable protein source. However, it is only used to feed livestock. TM can be used as an affordable protein source in human diet. In this research work, the effects of extraction pH (10, 11 and 12) and isoelectric pH (4.5, 5.5 and 6.5) on functional and thermal properties of proteins isolated from TM were studied. Functional properties of extracted proteins including water and oil absorption, foaming capacity and foam stability as well as thermal properties were measured. The results showed that the highest protein extraction efficiency (87%) was obtained in extraction pH at pH≥11 and isoelectric pH 6.5. In addition, the highest levels of water and oil absorption capacity were obtained in proteins precipitated at pH 6.5 (p ≤0.05). The highest level of foaming capacity and stability was observed in proteins extracted at pH11 and precipitated at pH6.5. On the other hand, thermal properties of TM protein including onset denaturation temperature (Tm), denaturation peak temperature (Td) and denaturation enthalpy (ΔHd) were affected by sediment pH and pH 6.5 led to the highest thermal characteristics. Since the optimum characteristics of proteins isolated from TM were obtained at isoelectric pH 6.5 and extraction pH 11, these pH values are recommended for the extraction and precipitation of TM proteins, respectively.  

Keywords


Article Title [Persian]

بررسی تأثیر pH استخراج و ایزوالکتریک بر خصوصیات عملکردی و حرارتی پروتئین کنجاله ارده

Authors [Persian]

  • توحید نجفی میرک 1
  • نفیسه کوشکی 2
  • محمد حسین خداپرست حداد 3
  • فریبا نقی پور 4
  • محسن وظیفه دوست 5
1 موسسه تحقیقات اصلاح و تهیه نهال وبذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
2 دانشجوی سابق دکترا، گروه صنایع غذایی دانشگاه آزاد نیشابور
3
4
5
Abstract [Persian]

اچکیده- 
-ارده یکی از محصولات مهم به‏دست آمده از دانه کنجد پوست‏گیری شده می‏باشد. کنجاله ارده بعنوان یک محصول جانبی در استخراج روغن از کنجد تولید می شودو یک منبع پروتئینی ارزشمند می باشد. با وجود این،در حال حاضر فقط به مصرف دام می‏رسد، در حالی که می تواند بعنوان یک منبع پروتئینی با ارزش و قابل دسترس در رژیم غذایی انسان استفاده شود. در پژوهش حاضر، تأثیر pH استخراج (10، 11 و 12) و pH ایزوالکتریک (5/4، 5/5 و 5/6) بر خصوصیات عملکردی و حرارتی ایزوله پروتئینی کنجاله ارده مورد مطالعه قرار گرفت. خصوصیات عملکردی پروتئین استخراج شده نظیر جذب آب و روغن، قدرت تشکیل کف و پایداری آن و ویژگی‏های حرارتی ارزیابی شد.نتایج نشان داد که بیشترین میزان بازده استخراج پروتئین (87 درصد) در pH استخراج 11 و 12 و pH ایزوالکتریک 5/6 بدست آمد. بیشترین میزان جذب آب و روغن از کنجاله ارده در پروتئین ترسیب شده در pH 5/6 گزارش شد (P≤0.05). بالاترین میزان کف و پایداری آن نیز  در pH استخراج 11 و pH ایزوالکتریک 5/6 مشاهده گردید. از سوی دیگر بالاترین میزان خصوصیات حرارتی پروتئین کنجاله ارده نظیر دمای اولیه دناتوراسیون (Tm)، نقطه اوج دمای دناتوراسیون (Td) و آنتالپی دناتوره شدن (ΔHd) در pH ایزوالکتریک 5/6 ملاحظه شد. از آنجایی که بهترین خصوصیات ایزوله پروتئینی کنجاله ارده در pH ایزوالکتریک 5/6 و pH استخراج 11 مشاهده گردید، در نتیجه این شرایط به منظور استخراج و ترسیب پروتئین موجود در کنجاله ارده پیشنهاد می‏گردد.

Keywords [Persian]

  • خصوصیات عملکردی
  • بازده استخراج پروتئین
  • کنجاله ارده
  • ویژگی‏های حرارتی
AACC (American Association of Cereal Chemists). (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). USA: Paul, MN.
Achouri, A., Nail, V., & Boye, J. I. (2012). Sesame protein isolate: Fractionation, secondary structure and functional properties. Food Research International, 46(1), 360-369.
Akintayo, E. T., Oshodi, A. A., & Esuoso, K. O. (1999). Effects of NaCl, ionic strength and pH on the foaming and gelation of pigeon pea (Cajanus cajan) protein concentrates. Food Chemistry, 66(1), 51-56.
AOAC (Association of Official Agricultural Chemists). (2002). Official methods of analysis (15th ed). Arlington: Association of official Analytical Chemists-Washangton.
Adegunwa, M. O., Bakare, H. A., & Akinola, O. F. (2012). Enrichment of noodles with soy flour and carrot powder. Nigerian Food Journal, 30(1), 74-81.
Cho, S. Y., & Rhee, C. (2004). Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. Food Science Technology, 37(8), 833-839.
Crockett, R., Le, P., & Vodovotz, Y. (2011). Effects of soy protein isolate and egg white solids on the physicochemical properties of gluten-free bread. Food Chemistry, 129(1), 84-91.
Demirhan, E. & Özbek, B. (2013). Influence of enzymatic hydrolysis on the functional properties of sesame cake protein. Chemical Engineering Communications, 200(5), 655-666.
Egorova, E. Y., Khmelev, V. N., & Reznichenko, I.Y. (2017). Production of vegetable “milk” from oil cakes using ultrasonic cavitation. Foods and Raw Materials, 5(2), 24-35.
Elleuch, M., Bedigian, D., Besbes, S., Blecker, C., & Attia, H. (2012). Dietary fibre characteristics and antioxidant activity of sesame seed coats (testae). International Journal of Food Properties, 15(1), 25-37.
Escamilla‐Silva, E. M., Guzmán‐Maldonado, S. H., Cano‐Medinal, A., & González Alatorre, G. (2003). Simplified process for the production of sesame protein concentrate. Differential scanning calorimetry and nutritional, physicochemical and functional properties. Journal of the Science of Food and Agriculture, 83(9), 972-979.
Fetzer, A., Herfellner, T., Stäbler, A., Menner, M., & Eisner, P. (2018). Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake. Industrial Crops and Products, 12, 236-246.
Food and Agriculture Organization Statistical Databases (FAOSTAT). (2019). Sesame seed, crops production. Retrieved from: http://www.faostat.org.
Gupta, S., Chhabra, G. S., Liu, C., Bakshi, J. S., & Sathe, S. K. (2018). Functional properties of select dry bean seeds and flours. Journal of Food Science, 83(8), 2052-2061.
Harwalkar, V. R., & MA, C. Y. (1987). Study of thermal properties of oat globulin by differential scanning calorimetry. Journal of Food Science, 52(2), 394-398.
Inyang, U. E., & Iduh, A. O. (1996). Influence of pH and salt concentration on protein solubility, emulsifying and foaming properties of sesame protein concentrate. Journal of the American Oil Chemists' Society, 73(12), 1663-1667.
Ishii, Y., & Takiyama, K. (1994). Extraction of calcium, oxalate and calcium oxalate crystals from sesame seeds. Bunseki Kagaku, 43(2), 151-155.
Jahandideh, H., Haddad Khodaparast, M. H., & Taghizadeh, M. (2013). Evaluation of Tahini oil extraction efficiency and comparison of sesame meal with different lubrication methods. Retrieved from: https://www.civilica.com/Paper-NCFOODI21- 383.html. (In Persian).
Kanu, P. J., Kerui, Z., Ming, Z. H., Haifeng, Q., Kanu, J. B., & Kexue, Z. (2007). Sesame Protein 11: functional properties of sesame (Sesamum indicum L.) protein isolate as influenced by pH, temperature, time and ratio of flour to water during its production. Asian Journal of Biochemistry, 2(5), 289-301.
Kapadia, G. J., Azuine, M. A., Tokuda, H., Takasaki, M., Mukainaka, T., Konoshima, T., & Nishino, H. (2002). Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the epsteinbarr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacological Research, 45, 499-505.
Kaur, M., & Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 102(1), 366-374.
Martins, V. B., & Netto, F. M. (2006). Physicochemical and functional properties of soy protein isolate as a function of water activity and storage. Food Research International, 39(2), 145-153.
Meng, G. T., & Ma, C. Y. (2001). Thermal properties of PH aseolus angularis (red bean) globulin. Food Chemistry, 73(4), 453-460.
Muhamyankaka, V., Shoemaker, C. F., Nalwoga, M., & Zhang, X. M. (2013). Physicochemical properties of hydrolysates from enzymatic hydrolysis of pumpkin (Cucurbita moschata) protein meal. International Food Research Journal, 20(5), 2227-2240.
Naghizadeh Raeisi, S. H., Mohamadi Rami, A., Shahidi, S. A. & Ghorbani Hasan-Saraei, A. (2019). Extraction of rice bran protein (Hashemi cultivar) and investigation of its functional characteristics. Journal of Food Science and Technology, 85(15), 467-478 (In Persian).
 Onsaard, E., Putthanimon, J., Singthong, J., & Thammarutwasik, P. (2018). Oxidation stability of sesame oil encapsulated by spray drying. International Food Research Journal, 25(2), 784-792.
Parniakov, O., Bals, O., Barba, F. J., Mykhailyk, V., Lebovka, N., & Vorobiev, E. (2018).  Application of differential scanning calorimetry to estimate quality and nutritional properties of food products. Critical Reviews in Food Science and Nutrition, 58(3), 362-385.
Phongthai, S., Aamico, S., Schoenlechner, R., Homthawornchoo, W., & Rawdkuen, S. (2017). Effects of protein enrichment on the properties of rice flour based gluten-free pasta. LWT-Food Science and Technology, 80, 378-385.
Ragab, D. M., Babiker, E. E., & Eltinay, A. H. (2004). Fractionation, solubility and functional properties of cowpea (Vigna unguiculata) proteins as affected by pH and/or salt concentration. Food Chemistry, 84(2), 207-212.
Ranganayaki, S., Vidhya, R., & Jaganmohan, R. (2012). Isolation and proximate determination of protein using defatted sesame seed oil cake. International Journal of Nutrition and Metabolism, 4(10), 141-145.
Ribotta, P. D., Ausar, S. F., Morcillo, M. H., Perez, G. T., Beltramo, D. M., & Leon, A. E. (2004). Production of gluten free bread using soybean flour. Journal of Science Food and Agriculture. 84, 1969-1974.
Saini, C. S., Sharma, H. K., & Sharma, L. (2018). Thermal, structural and rheological characterization of protein isolate from sesame meal. Journal of Food Measurement and Characterization, 12(1), 426-32.
Scopes, R. K. (1994). Protein purification: Principles and practice. Springer Science & Business Media. eBook. Germany: Springer Advanced Texts in Chemistry Springer. Retrieved from: https://www.springer.com/gp/book/9780387940724.
Tan, S. H., Mailer, R. J., Blanchard, C. L., Agboola, S. O., & Day, L. (2014). Gelling properties of protein fractions and protein isolate extracted from Australian canola meal. Food Research International, 62, 819-828.
Torlak, E., Sert, D., & Serin, P. (2013). Fate of Salmonella during sesame seeds roasting and storage of tahini. International Journal of Food Microbiology, 63(2-3), 214-217.
Xu, X., Jiang, L., Zhou, Z., Wu, X., & Wang, Y. (2012). Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS Applied Material and Interfaces, 4(8), 4331-4337.
Yadav, U., Singh, N., Kaur, A., & Thakur, S. (2018). Physico-chemical, hydration, cooking, textural and pasting properties of different adzuki bean (Vigna angularis) accessions. Journal of Food Science and Technology. 55(2), 802-10.