Distribution of phosphorus and the effect of physicochemical properties and clay minerals on phosphorus release in some calcareous soils

Document Type : Full Article

Authors

1 Department of Agriculture, Payame Noor University, Tehran, I. R. Iran

2 Department of Soil and Water Research, Khuzestan Agricultural and Natural Resources Research and Education Center, AREEO, Ahvaz, I. R. Iran

3 Department of Environments, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, I. R. Iran

Abstract

Phosphorus (P) is a nutrient essential for plant, which its availability in soils changes with aging process, leaching, precipitation processes, and the landform change. There is limited information available on kinetics release of P in calcareous soils. Therefore, the purpose of this study was to investigate distribution of P and the effect of physicochemical properties and clay minerals on its release in some dominant orders of the calcareous soils in Kohgiluyeh-and-Boyer-Ahmad province, using the 0.01 M calcium chloride ( ) extractant. The results showed that the P released rapidly from the soil and continued slowly. After 72 h, the amount of P released in the studied soils ranged between 3.2 and 25.4 mg kg-1. Evaluation of the fitted different equations on P released in the studied soils revealed that the Simple Elovich and power function equations could well predict the P release process in the studied soils. The results of the correlation between soil properties and released P contents showed that P release coefficients (including the slope and intercept in the Simple Elovich equation) have a significant negative relationship with the amount of smectite and vermiculite minerals. Also, the release coefficient of the parabolic diffusion equation had a significant negative relationship with pH and the amount of illite and palygorskite minerals.

Keywords


Article Title [Persian]

توزیع فسفر و اثر ویژگی‌های فیزیکوشیمیایی و کانی‌های رسی بر آزادسازی فسفر در تعدادی از خاک‌های آهکی

Authors [Persian]

  • سیروس شاکری 1
  • ابوالفضل آزادی 2
  • محبوب صفاری 3
1 گروه کشاورزی، دانشگاه پیام نور، تهران، ج. ا. ایران
2 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران،
3 گروه پژوهشی محیط زیست، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران
Abstract [Persian]

فسفر به عنوان یک عنصر غذایی ضروری برای رشد گیاهان می باشد که دسترسی آن در خاک با گذشت زمان، آبشویی، ترسیب و تغییر زمین­نما تغییر می­کند. اطلاعات در مورد سینتیک آزاد سازی فسفر در خاک­های آهکی محدود است. بنابراین هدف از این تحقیق، بررسی توزیع فسفر و تاثیر ویژگی­های فیزیکوشیمیایی و کانی­های رسی بر آزادسازی فسفر در تعدادی از رده­های غالب خـاک­هـای آهکی اسـتان کهگیلویه و بویر­احمد، با عصاره­گیر کلرید کلسیم 01/0 مولار بود. نتایج این پژوهش نشان داد، رها سازی فسفر از خاک در ابتدا سریع  و سپس به آهستگی ادامه یافت. بعد از گذشت 72 ساعت، مقدار فسفر آزاد شده در خاک­ها در محدوده 2/3 تا 4/25 میلی­گرم در کیلوگرم بود. بر اساس برازش معادلات مختلف بر داده های واجذبی فسفر، معادلات الوویچ و تابع توانی توانستند به خوبی فرایند رهاسازی فسفر را در خاک­های مورد مطالعه پیش­بینی کنند. نتایج مطالعات همبستگی خصوصیات خاک و اجزای رهاسازی فسفر در خاک‌ها نشان داد که برخی ضرایب آزاد شدن فسفر (از جمله شیب و عرض از مبدا معادله الوویچ) ارتباط منفی معنی­داری با مقدار کانی اسمکتیت و ورمی­کولیت دارند. همچنین، ضریب آزاد سازی معادله پخشیدگی پارابولیک رابطه معنی دار منفی با pH ، میزان ایلیت و کانی پالیگورسکیت نشان داد.

Keywords [Persian]

  • آزادسازی فسفر
  • کانی‌های رسی
  • خاک‌های آهکی
Abtahi, A. (1980). Soil genesis as affected by topography and time in highly calcareous parent materials under semiarid conditions in Iran.  Soil Science Society of America Journal, 44(2), 329-336.
Agbenin, J. O., & van Raij, B. (2001). Kinetics and energetics of phosphate release from tropical soils determined by mixed ion‐ exchange resins.  Soil Science Society of America Journal, 65(4), 1108-1114.
Amer, F., Bouldin, D. R., Black, C. A., & Duke, F. R. (1955). Characterization of soil phosphorus by anion exchange resin adsorption and P 32- equilibration. Plant and Soil, 6(4), 391-408.
Azadi, A., & Baghernejad, M. (2016). Evaluation of the status of P fractions and their relationships with selected soil properties in some calcareous soils. Jordan Journal of Agricultural Sciences, 405(3691), 1-14.
Azadi, A., & Baghernejad, M. (2019). Application of kinetic models in describing soil Phosphorus release and relation with soil phosphorus fractions across three soil topsequences of calcareous soils.  Eurasian Soil Science, 52(7), 778-792.
Azadi, A., & Shakeri, S. (2020). Effect of different land use on potassium forms and some soil properties in Kohgiluyeh and Boyer- Ahmad province, southwest Iran. Iran Agricultural Research, 39(1), 121-133.
Azadi, A., Baghernejad, M., Karimian, N., & Abtahi, S. (2016). Inorganic phosphorus fractions and their relationships with soil characteristics of selected Calcareous soils of Fars province. Water and Soil, 29(5), 1288-1296.
Biabanaki, F. S., & Hosseinpur, A. R. (2008). Phosphorus release kinetics and the correlation between kinetics models constants and soil properties and plant indices in some Hamadan soils.  Journal of Water and Soil Science, 11(42), 491-503. (In persion).
Chapman, H. D. (1965). Cation‐ exchange capacity. Methods of soil analysis: Part 2 Chemical and Microbiological Properties, 9, 891-901.
Cooke, L. J., & Hislop, J. (1963). Use of anion- exchange resin for the assessment of available soil phosphate.  Soil Science, 96(5), 308-312.
Dalal, R. C. (1974). Desorption of soil phosphate by anion‐exchange resin. Communications in Soil Science and Plant Analysis, 5(6), 531-538.
Elkhatib, E. A., & Hern, J. L. (1988). Kinetics of phosphorus desorption from appalachian soils 1. Soil Science, 145(3), 222-229.
Elrashidi, M. A., Van Diest, A., & El-Damaty, A. H. (1975). Phosphorus determination in highly calcareous soils by the use of an anion exchange resin. Plant and Soil, 42(1), 273-286.
Freese, D., Lookman, R., Merckx, R., & Van Riemsdijk, W. H. (1995). New method for assessment of long‐ term phosphate desorption from soils. Soil Science Society of America Journal, 59(5), 1295-1300.
García‐Rodeja, I., & Gil‐Sotres, F. (1997). Prediction of parameters describing phosphorus‐ desorption kinetics in soils of Galicia (Northwest Spain). Journal of Environmental Quality, 26(5), 1363-1369.
Gee, G. W., & Bauder, J. W. (1986). Hydrometer method.  Methods of Soil Analysis: Part, 1, 404-408.
Jackson, M. L. (1975). Soil chemical analysis: Advanced course. Madison, WI: Department of Soil Science, University of Wisconsin.
Jafari, A. Z. A. M., Shariatmadari, H., Khademi, H., & Rezainejad, Y. (2008). Soil clay mineralogy in four toposequences from arid and semiarid regions and its relationship with kinetics of phosphorus release. Journal of Water and Soil Science, 12(44), 153-168 (In Farsi).
Jalali, M., & Ahmadi Mohammad Zinli,  N. (2011). Kinetics of phosphorus release from calcareous soils under different land use in Iran. Journal of Plant Nutrition and Soil Science, 174(1), 38-46.
Jalali, M., & Peikam, E. N. (2013). Phosphorus sorption–desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environmental Monitoring and Assessment, 185(1), 537-552.
Johns, W. D., Grim, R. E., & Bradley, W. F. (1954). Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Research, 24(4), 242-251.
Kittrick, J. A., & Hope, E. W. (1963). A procedure for the particle- size separation of soils for X-ray diffraction analysis. Soil Science, 96(5), 319-325.
Loeppert R, Suarez D. (1996). Carbonate and gypsum. In: Sparks, D. (Ed.). Methods of soil analysis part 3-chemical methods. Madison (pp. 437-474). (WI): American Society of Agronomy.
Martin, M., Celi, L., & Barberis, E. (2004). Desorption and plant availability of myo- inositol hexaphosphate adsorbed on goethite. Soil Science, 169(2), 115-124.
Mehra, O. P., & Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionate citrate system with sodium bicarbonate. Clays and Clay Minerals, 7, 317-327.
Moazallahi, M., & Baghernejad, M. (2018). Surface adsorption of phosphorus and determination of its buffering indices in different soil orders along a climo-toposequence. Iranian Journal of Soil and Water Research, 49(5), 1131-1144.
Moazallahi, M., Baghernejad, M., & Naghavi, H. (2018). Effect of incubation time on transformation rate and chemical forms of phosphorous in calcareous soils along a climotoposequence. Spanish Journal of Soil Science, 8(3), 363-381.
Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
Nafiu, A. (2009). Effects of soil properties on the kinetics of desorption of phosphate from alfisols by anion‐ exchange resins. Journal of Plant Nutrition and Soil Science, 172(1), 101-107.
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with Sodium bicarbonate (No. 939). US: Department of Agriculture.
Owliaie, H. R., Abtahi, A., & Heck, R. J. (2006). Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma, 134(1-2), 62-81.
Pierzynski, G. M., McDowell, R. W., & Thomas Sims, J. (2005). Chemistry, cycling, and potential movement of inorganic phosphorus in soils. Phosphorus: Agriculture and the Environment, 46, 51-86.
Rezaei, S. A., & Gilkes, R. J. (2005). The effects of landscape attributes and plant community on soil physical properties in rangelands. Geoderma, 125(1-2), 145-154.
Saha, U. K., Liu, C., Kozak, L. M., & Huang, P. M. (2004). Kinetics of selenite adsorption on hydroxyaluminum‐and hydroxyaluminosilicate‐ montmorillonite complexes. Soil Science Society of America Journal, 68(4), 1197-1209.
Shakeri, S., & Saffari, M. (2019). Distribution of zinc and copper chemical forms and their relationship with some physico- chemical properties and clay minerals in some calcareous soils. Iran Agricultural Research, 38(2), 71-82.
Shakeri, S., & Abtahi, S. A. (2018). Potassium forms in calcareous soils as affected by clay minerals and soil development in Kohgiluyeh and Boyer- Ahmad province, southwest Iran. Journal of Arid Land, 10(2), 217-232.
Shakeri, S., & Abtahi, S. A. (2020). Potassium fixation capacity of some highly calcareous soils as a function of clay minerals and alternately wetting- drying. Archives of Agronomy and Soil Science, 66(4), 445-457.
Shariatmadari, H., Shirvani, M., & Jafari, A. (2006). Phosphorus release kinetics and availability in calcareous soils of selected arid and semiarid toposequences. Geoderma, 132(3-4), 261-272.
Sharpley, A. N. (1983). Effect of soil properties on the kinetics of phosphorus desorption. Soil Science Society of America Journal, 47(3), 462-467.
Sharpley, A. N., Ahuja, L. R., & Menzel, R. G. (1981). The release of soil phosphorus to runoff in relation to the kinetics of desorption. Journal of Environmental Quality, 10(3), 386-391.
Sharpley, A. N., & Ahuja, L. R. (1983). A diffusion interpretation of soil phosphorus desorption. Journal of Soil Science, 135 322-326.
Sparks, D. L. (1999). Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. Soil physical Chemistry, 2, 135-191
Taghipour, M., & Jalali, M. (2013). Effect of low- molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran. Environmental Monitoring and Assessment, 185(7), 5471-5482.
Wahba, M. M., El-Ashry, S. M., & Zaghloul, A. M. (2000). kinetics of phosphate adsorption as affected by vertisols properties. Egyptian Journal of Soil Science 42: 571–88.
Waldrip-Dail, H., He, Z., Erich, S. M., & Honeycutt, W. C. (2009). Soil phosphorus dynamics in response to poultry manure amendment. Soil Science, 174(4), 195-201.
Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677-678.
Younessi, N., Kalbasi, M., & Shariatmadari, H. (2010). Cumulative and residual effects of organic and chemical fertilizers on chemical properties and P sorption-desorption reactions in a calcareous soil: II. Phosphorus desorption kinetics. World Applied Sciences Journal, 11(4), 462-469.