Segmented linear Model to characterize tolerance to tomato yellow leaf curl virus and tomato leaf curl virus in two tomato cultivars under greenhouse conditions

Document Type : Research Paper


1 Department of Plant Production and Genetics, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 -Department of Plant Production and Genetics, College of Agriculture, Shiraz University, Shiraz, I. R. Iran 2-Department of Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, I. R. Iran


To investigate the amount of yield losses caused by Iranian  isolates of tomato yellow leaf curl virus (TYLCV-[Ab]) and tomato leaf curl Karnataka virus (ToLCKV-IR) in Rio Grande (RG) and Grosse Lisse (GL) tomato cultivars, tomato seedlingswere separately agroinoculated with  an infectious clone of either virus and disease development was monitored over four time intervals. After the emergence of symptoms, disease severity (DS) was evaluated visually using an ordinal rating scale and the data was converted to a ratio scale. Losses caused by the viruses were estimated by measuring vegetative indices including wet and dry weight and height of the aerial and underground parts of the plants. Initial DS in plants infected by ToLCKV-IR was less than those infected by TYLCV-[Ab]. Descending order of rates of disease increase for the studied pathosystems was as follows: ToLCKV-IR-infected GL>TYLCV-Ab-infected GL> TYLCV-[Ab]-infected GL> ToLCKV-IR-infected RG. With delayed inoculation, DS was reduced in both cultivars inoculated with either of the two viruses. A segmented linear model showed a very good fit to the data of relative biomass and duration of exposure of all pathosystems. The estimated parameters of the model were used to evaluate different aspects of the damage curve. The highest crop loss disease threshold was observed for GL cultivar irrespective of the inoculated virus. Similar results were achieved when the desensitization disease level was evaluated. Curvilinear tolerance or slope did not show any significant difference between the infected-GL plants to either virus and also TOLCKV-IR-RG, while TYLCV-[Ab]-RG showed the highest curvilinear tolerance. Findings of this study can be applied in screening for tolerant tomato plants.


Article Title [Persian]

مدل تجربی خطی تکه ای برای توصیف جنبه های مختلف تحمل به ویروس پیچیدگی برگ زرد گوجه فرنگی و ویروس پیچیدگی برگ گوجه فرنگی در دو رقم گوجه فرنگی در شرایط گلخانه ای

Authors [Persian]

  • حبیب اله حمزه زرقانی 1
  • سید علی اکبر بهجت نیا 2
  • ساره دلنواز 1
1 1گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
2 1گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران 2ستاد مرکز تحقیقات ویروس شناسی گیاهی، بخش گیاهپزشکی، دانشکده
Abstract [Persian]

به منظور بررسی میزان خسارت محصول بوسیله جدایه‌های ایرانی ویروس پیچیدگی برگ زرد گوجه فرنگی (TYLCV-[Ab]) و ویروس کارناتاکای پیچیدگی برگ گوجه فرنگی (ToLCKV-IR) بر روی ارقام گوجه فرنگی ریوگراند (RG) و گروس لیزی (GL)، گیاهچه‌های گوجه فرنگی با همسانه‌های عفونت زای هر ویروس بطور جداگانه با روش آگرواینوکولیشن مایه زنی شدند و پیشرفت بیماری در چهار فاصله زمانی پایش گردید. پس از ظهور علائم شدت بیماری بصورت چشمی و با استفاده از یک مقیاس نمره دهی ترتیبی ارزیابی شد و داده ها به مقیاس نسبی تبدیل شدند. خسارات ویروس ها با اندازه گیری شاخص های رشد شامل وزن تر و خشک و ارتفاع بخش های هوائی و زیرزمینی گیاهان برآورد شد. شدت اولیه بیماری در گیاهان آلوده به ToLCKV-IR کمتر از گیاهان آلوده به TYLCV-[Ab] بود. حداکثر سرعت افزایش بیماری در گیاهان رقم GL آلوده به ToLCKV-IR مشاهده شد و بعد از آن به ترتیب سرعت افزایش بیماری گیاهان آلوده به TYLCV-[Ab] از هر دو رقم قرار گرفتند و کمترین سرعت افزایش بیماری در گیاهان GL آلوده به ToLCKV-IR مشاهده شد. با تأخیر در زمان مایه زنی، شدت بیماری در هر دو رقم آلوده به هر یک از دو ویروس کاهش یافت. در همه پاتوسیستم ها، مدل خطی تکه ای برازش خیلی خوبی به زیست توده نسبی و مدت تماس نشان داد. پارامترهای برآورد شده مدل برای ارزیابی جنبه های مختلف نمودار خسارت استفاده شد. صرفنظر از ویروس مایه زنی شده به گیاه بالاترین آستانه خسارت بیماری در رقم GL مشاهده شد. وقتی سطح حساسیت زدائی بیماری ارزیابی شد، نتایج مشابهی حاصل شد. تحمل منحنی- خطی یا شیب بین گیاهان GL آلوده به هر یک از دو ویروس و گیاهان RG آلوده به ToLCKV-IR تفاوت معنی داری نشان نداد، ولی رقم RG آلوده به TYLCV-[Ab] بالاترین تحمل منحنی- خطی را نشان داد. نتایج این پژوهش می تواند در غربال گری برای گیاهان گوجه فرنگی متحمل استفاده شود.

Keywords [Persian]

  • مدل خطی تکه ای
  • ویروس پیچیدگی برگ گوجه فرنگی
  • گوجه فرنگی
  • ویروس پیچیدگی برگ زرد گوجه فرنگی
Ajlan, A. M., Ghanem, G. A., & Abdulsalam, K. S. (2007). Tomato yellow leaf curl virus (TYLCV) in Saudi Arabia: Identification, partial characterization and virus vector relationship. Arab Journal of Biotechnology, 10(1), 179-192.
Bananej, K., Kheyr-Pour, A., Salekdeh, G. H., & Ahoonmanesh, A. (2004). Complete nucleotide sequence of Iranian tomato yellow leaf curl virus isolate: Further evidence for natural recombination amongst Begomoviruses. Archives of Virology, 149, 1435-1443.
Bastiaans, L. (1993). Effects of leaf blast on growth and production of a rice crop. 2. Analysis of the reduction in dry matter production, using two models with different complexity. Netherlands Journal of Plant Pathology, 99 (suppl3), 19-28.
Bedford, I. D., Briddon, R. W., Brown, J. K., Rosell, R. C., & Markham, P. G. (1994). Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. The Annals of Applied Biology, 125, 311-325.
Behjatnia, S. A. A., Eini Gandomani, O., & Rasoulpour, R. (2009). Infectivity of the cloned genome, transmission and host range of an Iranian isolate of tomato leaf curl geminivirus. Iranian Journal of Plant Pathology, 45, 47-59 (In Persian).
Behjatnia, S. A. A., Izadpanah, K., Dry, I. B., & Rezaian, M. A. (2004). Molecular characterization and taxonomic position of the Iranian isolate of tomato leaf curl virus. Iranian Journal of Plant Pathology, 40, 77-94 (In Persian).
Bhyan, S. B., Chowdhury, M. A. H., Alam, M. M., & Ali, M. S. (2007). Incidence and severity of tomato yellow leaf curl virus under phytopesticidal management. International Journal of Agricultural Research, 2, 590-598.
Chatchawankanphanich, O., Chiang, B. T., Green, S. K., Singh, S. J., & Maxwell, D. P. (1993). Nucleotide sequence of a geminivirus associated with tomato leaf curl from India. Plant Disease, 77, 1168.
Cohen, S., & Nitzany, F. E. (1966). Transmission and host range of tomato yellow leaf curl virus. Phytopathology, 56, 1127-1131.
Cooke, B. M. (2006). Disease assessment and yield loss. In Cooke B., Jones M., Gareth D., & Kaye B (Eds.) The epidemiology of plant diseases (pp. 43-75). Dordrecht: Springer.
Czosnek, H. (2008). Tomato yellow leaf curl virus. In Mahy B. W. J., & Van Regenmortel M. H. V. (Eds.) Encyclopedia of Virology (pp. 138-145). Oxford: Elsevier.  (DOI, 10.1016/B978-012374410-4.00717-2).
Czosnek, H. (2007). Tomato yellow leaf curl virus disease, management, molecular biology, breeding for resistance. Dordrecht: Springer.
De Barro, P. J. (1995). Bemisia tabaci biotype B: A review of its biology, distribution and control. Division of entomology technical paper No. 36. Canberra, Australia: Commonwealth Scientific and Industrial Research Organization (CSIRO).
De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1-19.
Fargette, D., & Vié, K. (1995). Simulation of the effects of host resistance, reversion and cutting selection on incidence of African cassava mosaic virus and yield losses in cassava. Phytopathology,85, 370–5.
Fazeli, R., Heydarnejad, J., Massumi, H., Shaabanian, M., & Varsani, A. (2008). Genetic diversity and distribution of tomato-infecting begomoviruses in Iran. Virus Genes, 38, 311-319.
Gawel, N. J., & Jarret, R. L. (1991). A modified CTAB DNA extraction procedure for Musa and IpomoeaPlant Molecular Biology Reporter, 9, 262-266.
Glick, E., Levy, Y., & Gafny, Y. (2009). The viral etiology of tomato yellow leaf curl disease – a review. Plant Protection Science, 3, 81-97.
Green, S. K., Sulyo, Y., & Lesemann, D. E. (1987). Outbreaks and new records. Leaf curl virus on tomato in Taiwan province. FAO Plant Protection Bulletin, 35, 62.
Hajimorad, M. R., KheyrPour, A., Alavi, V., Ahoonmanesh, A., Bahar, M., Rezaian, M. A., & Gronenborn, B. (1996). Identification of whitefly transmitted tomato yellow leaf curl geminivirus from Iran and a survey of its distribution with molecular probes. Plant Pathology, 45, 418-425.
Mabvakure, B., Martin, D. P., Kraberger, S., Cloete, L., van Brunschot, S., Geering, A. D. W., Thomas, J. E., Bananej, K., Lett, J. M., Lefeuvre, P., Varsani, A., & Harkins, G. W. (2016). Ongoing geographical spread of Tomato yellow leaf curl virus. Virology, 498, 257-264.
Madden, L. V., Hughes, G., & Irwin, M. E. (2000). Coupling disease-progress-curve and time-of-infection functions for predicting yield loss of crops. Phytopathology, 90, 788-800.
Madden, L. V., Hughes, G., & van den Bosch, F. (2007). The study of plant disease epidemics. St. Paul, MN: APS Press.
Madden, L. V., & Nutter Jr., F. W. (1995). Modeling crop losses at the field scale. Canadian Journal of Plant Pathology,17, 124-137.
Makkouk, K. M., Shehab, S., & Majdalani, S. E. (1979). Tomato yellow leaf curl virus: Incidence, yield losses and transmission in Lebanon. Journal of Phytopathology, 96, 263-267.
Mansour, A., & Al-Musa, A. (1992). Tomato yellow leaf curl virus; host range and virus-vector relationships. Plant Pathology, 41, 122-125.
Moriones, E., & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 71, 123-134.
Nakhla, M. K., & Maxwell, D. P. (1998). Epidemiology and management of tomato yellow leaf curl disease. In Hadidi, A., Khetarpal R. K. & Koganezawa H. (Eds.). Plant virus disease control (pp. 565-583) St. Paul, MN: APS Press.
Nour-Eldin, F., Mazyad, H., & Hassan, M. S. (1969). Tomato leaf curl disease. Agriculture Research Review, 47, 49-54.
Pakniat, A., Behjatnia, S. A. A., Kharazmi, S., Shahbazi, M., & Izadpanah, K. (2010). Molecular characterization and construction of an infectious clone of a new dominant strain of tomato yellow leaf curl virus in southern Iran. Iranian Journal of Plant Pathology, 46, 101-115.
Pegán, I., & García-Arenal, F. (2018). Tolerance to plant pathogens: theory and experimental evidence. International Journal of Molecular Sciences, 19, 810. doi: 10.3390/ijms19030810.
Pico, B., Diez, M. J., & Nuez, F. (1996). Viral disease causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus – a review. Scientia Horticulture, 67, 151-196.
Pilowsky, M., & Cohen, S. (1990). Tolerance of tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Disease, 74, 248-250.
Politowski, K, & Browning, J. A. (1978). Tolerance and resistance to plant disease: An epidemiological study. Pytopathology, 68, 1177-1185.
Polston, J. E., McGovern, R. J., & Brown, L. G. (1999). Introduction of tomato yellow leaf curl virus in Florida and implication for the spread of this and other geminiviruses of tomato. Plant Disease, 83, 984-988.
Retuerma, M. L., Pablo, G. O., & Price, W. C. (1971). Preliminary study of the transmission of Philippine tomato leaf curl virus by Bemisia tabaci. Philippines Phytopathology, 7, 27-34.
Rees, R. G., Thomson, J. P., & Mayer, R. J. (1979). Slow rusting and tolerance to rusts in wheat. I. the progress and effects of epidemics of Puccinia graminis tritici in selected wheat cultivars. Australian Journal of Agricultural Research, 30, 403-419.
Rubio, L., Herrero, J. R., Sarrió, J., Moreno, P., & Guerri, J. (2003). A new approach to evaluate relative resistance and tolerance of tomato cultivars to begomoviruses causing the tomato yellow leaf curl disease in Spain. Plant Pathology, 52, 763-769.
Savary, S., De Jong, P. D., Rabbinge, R., & Zadoks, J. C. (1990). Dynamic simulation of groundnut rust: A preliminary model. Agricultural Systems, 32, 113-141.
Savary, S., & Zadoks, J. C. (1992). An analysis of crop loss in the multiple pathosystem groundnut - rust - late leaf spot. II . A study of the interactions between diseases and crop intensification in factorial experiments. Crop Protection, 11, 110-120.
Savary, S., Teng, P. S., Willocquet, L., & Nutter Jr., F. W. (2006). Quantification and modeling of crop losses: A review of purposes. Annual Review Phytopathology, 44, 89-112.
SAS Institute Inc. (1999). SAS/STAT user’s guide. Version 8. Cary, NC: SAS Institute Inc.
Varsani, A., Roumagnac, P., Fuchs, M., Navas-Castillo, J., Moriones, E., Idris, A., Briddon, R. W., Rivera- Bustmante, R., Zerbibi, F. M., & Martin, D. P. (2017). Capulavirus and Grablovirus: Two new genera in the family Geminiviridae. Archives of Virology,162(6), 1819-1831.
Zadoks, J. C. (1985). On the conceptual basis of crop loss assessment: The threshold theory. Annual Review Phytopathology, 23,455-473.
Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management. New York, USA: Oxford University Press.