Effects of saline irrigated water on forage quality of globe artichoke (Cynara cardunculus var. scolymus L.)

Document Type : Research Paper


1 Natural Resources Research Department, Isfahan Agricultural and Natural Resources Research Center, Agricultural Research Education and Extension Organization (AREEO), Isfahan, Iran.

2 Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.



Salinity is a major abiotic stress for crop production in many parts of the world. To evaluate the effects of irrigation with saline water on growth parameters and forage quality of globe artichoke (Cynara cardunculus var. scolymus), a field experiment was conducted using a randomized complete block design with three replications at Isfahan Agricultural and Natural Resources Research and Education Center, Iran during 2013-2015. The treatments were four irrigation levels with saline water (4, 8, 12 and 16 dS.m-1). Plant fresh weight (FW), plant dry weight (DW), crude protein (CP), water-soluble carbohydrates (WSC), neutral detergent fiber (NDF), acid detergent fiber (ADF), dry matter digestibility (DMD), total tannins (TT) and ash content were measured in the second year of growth season. The results showed that the maximum fresh weight (51551 kg ha-1) and dry weight (9000 kg ha-1) were obtained at EC=4 dS.m−1. Increasing salinity levels caused a significant reduction in NDF and ADF contents, while ash, CP, DMD and TT contents were increased. The treatments of EC=12 and EC=16 dS.m−1 produced the highest amount of CP (178.3, 185.1 g/kg DM), DMD (613.2, 636.2g/kg DM) and the lowest content of NDF (598, 585.1g/kg DM) and ADF (393, 3778g/kg DM), respectively. The lowest tannin content (28.2g/kg DM) was observed in EC=4 dS.m−1 and there was no significant difference between the treatments of EC=8 and EC=12 dS.m−1. Generally, results showed that although increasing salinity decreased plant yield, it could increase forage quality characteristics.


Article Title [فارسی]

تأثیر آب آبیاری شور بر کیفیت علوفه کنگرفرنگی (Cynara cardunculus var. scolymus L.)

Authors [فارسی]

  • بابک بحرینی نژاد 1
  • مرضیه اله دادی 2
1 استادیار بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی،
2 دکتری اکولوژی گیاهان زراعی دانشکده کشاورزی دانشگاه تبریز
Abstract [فارسی]

شوری تنش مهم غیرزیستی برای تولید محصولات زراعی در بسیاری از نقاط جهان است. برای ارزیابی تاثیر آبیاری با آب شور بر پارامترهای رشد و کیفیت علوفه کنگرفرنگی، آزمایش مزرعه­ای در قالب طرح بلوک­های کاملاً تصادفی با سه تکرار در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان، ایران طی سال­های 93-1391 انجام شد. تیمارهای مورد بررسی شامل چهار سطح شوری با آب آبیاری با هدایت الکتریکی 4، 8، 12 و 16 دسی زیمنس بر متر بود. وزن ‏تر و خشک گیاه، پروتئین خام، کربوهیدراتهای محلول در آب، الیاف نامحلول در شوینده خنثی، الیاف نامحلول در شوینده اسیدی، قابلیت هضم ماده خشک، تانن کل و خاکستر درسال دوم رشد اندازه‏گیری شدند. نتایج نشان داد که حداکثر وزن ‏تر (51551 کیلوگرم در هکتار) و وزن خشک (9000 کیلوگرم در هکتار) در تیمار شوری با آب آبیاری با هدایت الکتریکی  dS.m-14بدست آمد. افزایش سطح شوری باعث کاهش معنی­دار میزان الیاف نامحلول در شوینده خنثی و الیاف نامحلول در شوینده اسیدی گیاه شد، درحالی‏که میزان خاکستر، پروتئین خام، قابلیت هضم ماده خشک و تانن کل افزایش یافت. تیمارهای شوری با آب آبیاری با هدایت الکتریکی  dS.m-112 و 16 بیشترین میزان پروتئین خام و قابلیت هضم ماده خشک و کمترین میزان الیاف نامحلول در شوینده خنثی و الیاف نامحلول در شوینده اسیدی را داشتند. کمترین میزان تانن (g/kg DM 28/2)در تیمار شوری با آب آبیاری با هدایت الکتریکی  dS.m-14 مشاهده شد و بین تیمارهای شوری با آب آبیاری با هدایت الکتریکی dS.m-1 8 و 12 اختلاف معنی­داری وجود نداشت. به طور کلی، نتایج نشان داد اگرچه با افزایش شوری عملکرد گیاه کاهش یافت لیکن توانست باعث افزایش خصوصیات کیفی علوفه شود.

Keywords [فارسی]

  • کنگرفرنگی
  • پروتئین خام
  • قابلیت هضم ماده خشک
  • آب شور
  • تانن کل
 Aksu, Ö.,& Altinterim, B. (2013). Hepato protective effects of artichoke (Cynara scolymus). Bilimve Genclik Dergisi, 1(2), 44-49.
Al-Dakheel, A.J., IftikharHussain, M., & Abdul Rahman, A. Q. (2015). Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. accessions. Agricultural Water Management, 159, 148-154.
Horwitz, W. & Latimer, G. W. (2007).Official methods of analysis. AOAC international (18th ed.), Arlington: Gaithersburg. Press.
Arzani, A. (2008). Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cell Development Biology – Plant, 44(5), 373-383.
Arzani, A., & Ashraf, M. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Review in Plant Science, 35(3), 146-189.
Ashraf, M., Shahzad, S. M., Imtiaz, M., & Rizwan, M.S. (2018). Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen metabolizing enzymes: A review. Journal of Plant Nutrition, 41, 1065-1081. 
Attia-Ismail, S.A. (2016). Nutritional and feed value of halophytes and salt tolerant plants nutritional and feed value of halophytes and salt tolerant plants., In: Hassan M, El Shaer VR (eds) Squires halophytic and salt-tolerant feed stuffs, impacts on nutrition, physiology and reproduction of livestock (pp 106-126), Boca, Raton: CRC Press
Bahreininejad, B. (2016). Evaluation of salinity tolerance in Cynara scolymus (Research report, Research Institute of Forests and Rangelands, Tehran, Iran).
Bavei, V., Shiran, B., & Arzani, A. (2011). Evaluation of salinity tolerance in sorghum (Sorghum bicolor L.) using ion accumulation, proline and peroxidase criteria. Plant Growth Regulation, 64(3), 275-285.
Ben-Ghedalia, D., Solomonb, R., Mirona, J., Yosefa, E., Zombergb, Z., Zukermanb, E., Greenbergc, A., & Kipnisa, T. (2001). Effect of water salinity on the composition and in vitro digestibility of winter-annual ryegrass grown in the Arava desert. Animal Feed Science and Technology, 91, 139-147.
Bhattacharjee, S., & Mukherjee, A.K. (2002). Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during early germination. Seed Science & Technology,30, 279-287.
Boyd, D. C., & Rogers, M. E. (2004). Effect of salinity on the growth of chicory (Cichorium intybus cv. Puna) - a potential dairy forage species for irrigation areas. Australian Journal of Experimental Agriculture, 44, 189-192.
Ceccarelli, N., Curadi, M., Picciarelli, P., Martelloni, L., Sbrana, C., & Giovannetti, M. (2010). Globe artichoke as functional food. Mediterranean Journal of Nutrition & Metabolism, 3, 197-201.
Chaparzade, N. (1996). Effects interaction salinity and calcium on photosynthesis, growth and mineral elements content in alfalfa. (A thesis of M.Sc. University of Tarbeyate Modarres). (In Persian)
Cornacchione, M.V., & Suarez, D.L. (2015). Emergence, forage production, and ion relations of alfalfa in response to saline waters. Crop Science, 55, 444-457.
Cornacchione, M.V., & Suarez, D.L. (2017). Evaluation of Alfalfa (Medicago sativa L.) Populations’ Response to Salinity Stress. Crop Science, 57, 137-150.
Dado, R.G., & Allen, M.S. (1995). Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary fiber or inert bulk. Journal of Dairy Science, 78(1), 118-33.
Domíngueza, A., Tarjueloa, J.M., de Juana, J.A., López-Mataa, E., Breidyb, J., & Karamc, F. (2011). Deficit irrigation under water stress and salinity conditions, The MOPECO-Salt Model. Agricultural Water Management, 98, 1451-1461.
El Shaer, H.M. (2010). Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research, 91, 3-12.
Elfeel, A.A., & Bakhashwain, A. (2012). Salinity effects on growth attributes mineral uptake, forage quality and tannin contents of Acacia saligna (Labill.) H. Wendl. Research Journal of Environmental and Earth Sciences, 4(11), 990-995.
Ferreira, J., Cornacchione, M., Liu, X., & Suarez, D. (2015). Nutrient composition, forage parameters, and antioxidant capacity of Alfalfa (Medicago sativa L.) in response to saline irrigation water. Agriculture, 5, 577-597.
Fowler, J., Hageman, J., Moore, K., Suzukida, M., Assadian, H., & Valenzuela, M. (1992). Salinity effects on forage quality of Russian thistle (Salsla iberica Sennen and Pau). Journal of Range Management, 45(6), 559-563.
Francois, L.E. (1995). Salinity effects on bud yield and vegetative growth of artichoke (Cynara scolymus L.). HortScience, 30, 69-71.
Francois, L.E., Donovan, T.J., & Maas, E.V. (1991). Calcium deficiency of artichoke buds in relation to salinity. HortScience, 26, 549-553.
Fulkerson, W.J., & Donaghy, D.J. (2001). Plant soluble carbohydrate reserves and senescence-Key criteria for developing an effective grazing management system for ryegrass-based pastures, a review. Australian Journal of Experimental Agriculture, 41, 261-275.
Gholizadeh, F., Manzari-Tavakkoli, A., & Pazoki, A. (2016). Evaluation of salt tolerance on germination stage and morphological characteristics of some medicinal plants Artichoke, Flax, Safflower and Coneflower. International Journal of Farming and Allied Sciences, 5(3), 229-237.
Gominho, J., Curt, M.D., Lourenco, A., Fernandez, J. & Pereira, H. (2018). Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass and Bioenergy, 109, 257-275.
Graifenberg, A., Giustiniani, L., Temperini, O., & Paola, M.L. (1995). Allocation of Na, Cl, K and Ca within plant tissues in globe artichoke Cynara scolymus L.under saline-sodic conditions. HortScience, 63, 1-10.
Graifenberg, A., Paola, M.L., & Giustiniani, L. (1993).Yield and growth of globe artichoke under saline - sodic conditions. HortScience, 28, 791-793.
Grant, K., Kreyling, J., Dienstbach, L.F.H., Beierkuhnlein, C., & Jentsch, A. (2014). Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agriculture, Ecosystem & Environment, 186, 11-22.
Grattan, S.R., & Grieve, C.M. (1999). Salinity- mineral nutrient relations in horticultural crops. HortScience, 78, 127-157.
Guerrero-Rodriguez, J.D. (2006). Growth and nutritive value of Lucerne (Medicago sativa L.) and Melilotus (Melilotus albus Medik.) under saline conditions (PhD’s thesis, School of Agriculture, Food and Wine, Adelaide, Australia).
Hakim, M.A., Juraimi, A.S.M., Begum, M.M., Hanafi, M.R., Ismail, H., & Selamat, A. (2010). Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African Journal of Biotechnology, 9(13), 1911-1918.
Jafari, A. A., Connolly, V., Frolich, A., & Walsh, E. K. (2003).A note on estimation of quality in perennial ryegrass by near infrared spectroscopy. Irish Journal of Agricultural and Food Research, 42, 293-299.
Jorenush, M.H., & Rajabi, M. (2015). Effect of drought and salinity tensions on germination and seedling growth of Artichoke (Cynara scolymus L.). International Journal of Advanced Biological & Biomedical Research, 3 (3), 297-302.
Khodary, S.E.A. (1992). Effect of salinity and tryptophan on growth and some metabolic changes in wheat and sorghum plants. Biologia Plantarum, 34, 439-443.
Khosravinejad, F., Heydari, R., & Farboodnia, T. (2009). Effect of salinity on organic solutes contents in barley. Pakistan Journal of Biology Science, 12 (2), 158-162.
Kian, Y. (2009). Response of yield and quality of Artichoke medicinal plant to salinity at the growth stages. (M.Sc. thesis, Faculty of Agriculture, University of Shahed, Iran). (In Persian)
Li, R., Shi, F., Fukuda, K., & Yang, Y. (2010). Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Science and Plant Nutrition, 56, 725-733.
Makarana, G., Yadav, R.K., Kumar, R., Soni, P.G., Yadav, T., Yadav, M.R., Datt, C., Rathore, D.K., Kar, S., & Meena, V.K. (2017). Fodder yield and quality of pearl millet (Pennisetum glaucum L.) Genotypes as influenced by salinity of irrigation water in north western India. Indian Journal of Animal Nutrition Science, 34, (1), 56-63.
Makkar, H.P.S. (2003). Quantification of tannins in tree and shrubs foliages – a laboratory manual. The Netherland: Kluwer Academic Press Dordrecht.
Marsico, G., Vicenti, A., Ragni, M., Laudadio, V., Lestingi, A., & Vonghia, G. (1999). The use of artichoke (Cynara scolymus L.) bracts in lambs feeding. Effect on productive performances and quanti-qualitative traits of carcasses and meat. Agricoltura Ricerca, 21, 39-48.
Mauromicale, G., & Licandro, P. (2002). Salinity and temperature effects on germination, emergence and seedling growth of globe artichoke. Agronomy, 22, 443-450.
Mauromicale, G., Pesce, G.R., Curt, M.D., Fernández, J., González, J., Gominho, J., Tabla, R., Roa, M.E., & Portis, E. (2019). Cynara cardunculus as a multiuse crop. In: Portis E., Acquadro A., Lanteri S. (Eds). The globe artichoke genome. Compendium of plant genomes, Cham: Springer.
Meneses, M., Megias, M.D., Madrid, J., Martinez-Teruel, A., Fernandez, F., & Oliva, J. (2007). Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Ruminant Research, 70, 292-296.
Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253, 201-218.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
Nabati, J., Kafi, M., Nezami, A., Rezvani Moghaddam, P., Masoumi, A., & ZareMehrjerdi, M. (2013). Evaluation of forage nutritive value in the halophyte plant of kochia (Kochia scoparia) under saline stress. Environmental Stresses in Crop Sciences, 6 (2), 123-136. (In Persian)
Nabati, J., Kafi, M., Nezami, A., RezvaniMoghaddam, P., Masoumi, A., & ZareMehrjerd, M. (2015). Evaluation of quantitative and qualitative characteristic of forage kochia (Kochia scoparia) in different salinity levels and time. Environmental Stresses in Crop Sciences, 12(4), 17-26. (In Persian)
Niu, G., Xu, W., Rodriguez, D., & Sun, Y. (2012). Growth and physiological responses of maize and sorghum genotypes to salt stress. International Scholarly Research Notices, 2012, 1-12.
Pandino, G., Lombardo, S., & Mauromicale, G. (2011). Chemical and morphological characteristics of new clones and commercial varieties of globe artichoke (Cynara cardunculus var. scolymus). Plant Foods for Human Nutrition, 66, 291-297. 
Pandino, G., Lombardo, S., Monaco, A., & Mauromicale, G. (2013). Choice of time of harvest influences the polyphenol profile of globe artichoke. Journal of Functional Foods, 5(4), 1822-1828.
Pare, M.N., Koné, D., Kengne, I.M., Dongo, K., & Akoa, A. (2011). Nutritional potential of Echinochloa pyramidalis (Lam.) Hitchc and chase, a forage plant used in constructed wetlands treatment of faecal sludge & wastewater. African Journal of Agricultural Research, 6(18), 4397-4408.
Ramos, T.B., ˇSim˚ unek, J., Gonc¸ alves, M.C., Martins, J.C., Prazeres, A., & Pereira, L.S. (2012). Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural Water Management, 111, 87-104.
Rezaei, M.,Arzani, A., Saeidi, G., & Karami, M. (2017). Physiology of salinity tolerance in Bromus danthoniae genotypes originated from saline and non-saline areas of West Iran. Crop and Pasture Science, 68, 92-99.
RezvaniMoghaddam, P., Amiri, M.B., Ehyayi, H.R., Fallahi, J., & AqhhavanyShajari, M. (2011). Effect of water and salinity stresses on germination indices and seedling growth in Artichoke (Cynara scolymus L.) and Purple coneflower (Echinacea purpurea), presented at International Conference “Medicinal and Aromatic plants in generating of new values in 21st century”. Sarajevo city, 9-12 November, Sarajevo.
Rondanelli, M., Giacosa, A., Orsini, F., Opizzi, A., & Villani, S. (2011). Appetite control and glycaemia reduction in overweight subjects treated with a combination of two highly standardized extracts from Phaseolus vulgaris and Cynara scolymus. Phytotherapy Research ,25, 1275-1282.
Saleh, S.A., Neuberger, H., & Schnitzler, W.H. (2005). Alleviation of salinity effect on artichoke productivity by Bacillus subtilis FZB24, supplemental Ca and micronutrients. Journal of Applied Botany and Food Quality, 79, 24-32.
Salehi, M., Kafi, M., & Kiani, A. (2009). Growth analysis of kochia (kochia scoparia (L.) schrad) irrigated with saline water in summer cropping. Pakistan Journal of Botany, 41(4), 1861-1870.
Sallam, S.M.A., Bueno, I.C.S., Godoy, P.B., Nozella, E.F., Vitti, D.M.S.S., & Abdalla, A.L. (2008). Nutritive value assessment of the artichoke (Cynara scolymus) by-product as an alternative feed resource for ruminants. Tropical and Subtropical Agroecosystems, 8, 181-189.
Salman, F.M., El-Nomeary, Y.A.A., Abedo, A.A., Abd El-Rahman, H.H., Mohamed, M.I., & Ahmed, S.M. (2014). Utilization of artichoke (Cynara scolymus) by-products in sheep feeding. American-Eurasian Journal of Agricultural & Environmental Science, 14 (7), 624-630.
Suyama, H., Benes, S.E., Robinson, P.H., Getachew, G., Grattan, S.R., & Grieve, C.M. (2007). Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water, Field evaluation. Animal Feed Science and Technology, 135, 329-345.
Teimouri, A., Jafari, M., & Azarniv, H. (2009). Effect of proline, soluble carbohydrates and water potential on resistance to salinity of three Salsola species. Desert, 14, 15-20.
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany,91(5), 503-27.
Tunçtürk, M., Tunçtürk, R., Yildirim, B., & Çiftçi, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10(10), 1827-1832.
Van Soest, P.J. (1994). Nutritional ecology of the ruminant Comstock (1st Ed.). Ithaca and London: Publishing Associates a Division of Cornell University Press.
Vincenzo, B., Vito, C., Vincenzo B.V., & Francesca, B. (2000). Response of artichoke to water salinity levels, IV International Congress on Artichoke, Valenzano-Bari city, October 17-21, Valenzano-Bari, Italy.
Yang, J., & Yen, H.E. (2002). Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiology, 130, 1032-1042.
Yeilaghi, H., Arzani, A., Ghaderian, M., Fotovat, R., & Feizi, M. (2012). Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chemistry, 130, 618-625.