Effects of wheat straw biochar and irrigation water on hydraulic and chemical properties of a sandy loam soil after faba bean cultivation

Document Type : Research Paper

Authors

Department of Irrigation, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

Nowadays, applying soil amendments is one of the most important ways to cope with water shortages and improve soil physical properties. In this regard, a greenhouse experiment was conducted to study the effect of different levels of irrigation water and wheat straw biochar on physical and chemical properties of a sandy loam soil, after harvesting faba bean. The experiment was performed with 5 biochar levels (0, 8, 16, 24 and 32 g kg-1) and 3 irrigation levels (100%, 75% and 50% of crop water requirement) using completely randomized design in three replications. Lowering the irrigation level to 50% did not influence soil physical and chemical properties except for saturated hydraulic conductivity (Ks), as Ks was significantly declined under 50% irrigation water levels as compared with full irrigation. Soil bulk density and particle density of 32 g kg-1 biochar treatment (B32) was reduced by 47% and 27%, respectively, while soil porosity and Ks increased as compared to no biochar application (B0). Under B32 treatment, the saturated electrical conductivity increased 5.6 times, and the cation exchange capacity and sodium adsorption ratio (SAR) was increased by 40.3% and 53.6% in comparison with B0, respectively. This made the soil saline (ECe>4 dS/m) but not sodic (SAR-1)1/2). It can be concluded that although, biochar level of 24 g kg-1 did not considerably increase soil water holding capacity compared to B0, it significantly improved the other soil physical and chemical properties, therefore, it can be used as soil amendment.

Keywords


Article Title [Persian]

اثر بیوچار تولید شده از کاه و کلش گندم و آب آبیاری بر ویژگی‌های هیدرولیکی و شیمیایی در خاک لوم شنی بعد از کشت باقلا

Authors [Persian]

  • فاطمه رزاقی
  • سمانه پورمنصور
  • علیرضا سپاسخواه
گروه علوم و مهندسی آب ، دانشکده کشاورزی، دانشگاه شیراز، ج. ا. ایران
Abstract [Persian]

امروزه کاربرد اصلاح کننده‌های خاک یکی از مهمترین راهکارهای سازگاری با کمبود آب و افزایش ویژگی‌های هیدرولیکی خاک می‌باشد. لذا، در یک آزمایش گلخانه‌ای، به بررسی اثر سطوح مختلف آب آبیاری و بیوچار بر ویژگی‌های فیزیکی و شیمیایی خاک لوم شنی بعد از برداشت باقلا پرداخته شد. این آزمایش با پنج سطح بیوچار (صفر، 8، 16، 24 و 32 گرم بر کیلوگرم) و سه سطح آبیاری (100درصد، 75 درصد و 50 درصد نیاز آبی) در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. کاهش در میزان آبیاری تا 50% تاثیری بر ویژگی‌های فیزیکی و شیمیایی خاک نداشت، بجز در مقدار Ks که تحت تیمار آب آبیاری 50% به صورت معنی‌داری نسبت به آبیاری کامل کاهش یافت. در تیمار 32 گرم بر کیلوگرم بیوچار (B32) نسبت به تیمار بدون بیوچار (B0)، مقدار وزن مخصوص ظاهری و حقیقی به ترتیب 47 و 27 درصد کاهش یافت، در‌حالی‌که سبب افزایش تخلخل خاک و Ks خاک گردید. در تیمار B32، مقدار هدایت الکتریکی اشباع 6/5 برابر و مقدار ظرفیت تبادل کاتیونی و نسبت جذبی سدیم (SAR) به ترتیب 3/40 و 6/53 درصد در مقایسه با B0 افزایش یافت، که این مساله سبب شور شدن (ECe>4 dS/m) و غیر سدیمی شدن (SAR-1)1/2) خاک گردید. می‌توان نتیجه گرفت که هرچند سطح بیوچار 24 گرم بر کیلوگرم افزایش قابل ملاحظه‌ای در میزان ظرفیت نگهداری آب خاک در مقایسه با B0 نداشت، اما سبب بهبود معنی‌دار ویژگی‌های فیزیکی و شیمیایی خاک گردید و در نتیجه می‌توان از این سطح بیوچار به عنوان اصلاح کننده خاک استفاده نمود.

Keywords [Persian]

  • ظرفیت تبادل کاتیونی
  • ظرفیت نگهداری آب
  • نسبت جذبی سدیم
  • هدایت هیدرولیکی اشباع
Abbaspour, M., & Sabetraftar, A. (2005). Review of cycles and indices of drought and their effect on water resources, ecological, biological, agricultural, social and economical issues in Iran. International Journal of Environmental Studies, 62, 709-724.
Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191.
Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G., & Pourbabaee, A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil Environment, 61, 475-482.
Alizadeh, A., & Keshavarz, A. (2005). Status of agricultural water use in Iran. In National Research Council, Water conservation, reuse, and recycling: Proceedings of an Iranian-American workshop (pp. 94-105). Washington DC, USA: National Academies Press.
Alloway, B. J. (2008). Micronutrients and Crop Production: An Introduction. In B. J. Alloway (Ed.), Micronutrient Deficiencies in Global Crop Production (pp. 1-39). Dordrecht: Springer.
Amoakwah, E., Frimpong, K. A., Okae-Anti, D., & Arthur, E. (2017). Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma, 307, 189-197.
Amoozegar, A., & Warrick, A. W. (1986). Hydraulic Conductivity of Saturated Soils: Field Methods. In E. A. Klute (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, (pp. 735-770). Madison,WI. USA: American Society of Agronomy : Crop Science Society of America-Soil Science Society of America.
Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955-966.
Arthur, E., & Ahmed, F. (2017). Rice straw biochar affects water retention and air movement in a sand-textured tropical soil. Archives of Agronomy and Soil Science, 63, 2035-2047.
Arthur, E., Tuller, M., Moldrup, P., & de Jonge, L. W. (2015). Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil. Geoderma, 243, 175-182.
Atkinson, B. S., Sparkes, D. L., & Mooney, S. J. (2009). Effect of seedbed cultivation and soil macrostructure on the establishment of winter wheat (Triticum aestivum). Soil& Tillage Research, 103, 291-301.
Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Rome, Italy: Food and Agriculture Organization of the United Nations.
Bower, C. A., Reitemeier, R., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73, 251-262.
Burrell, L. D., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96-102.
Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45, 629-634.
Cheng, C. H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72, 1598-610.
Chowdhury, M. A., de Neergaard, A., & Jensen, L. S. (2014). Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere, 97, 16-25.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., & Myhre, G. (2007). Changes in atmospheric constituents and in radiative forcing. In Solomon et al. (Eds.), Climate change 2007: The physical science basis,(pp. 129-234). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Franzluebbers, A. (2002). Water infiltration and soil structure related to organic matter and its stratification with depth. Soil & Tillage Research, 66, 197-205.
Gandomkar, A., & Dehghani, R. (2012). Studying the trend of drought in Fars province (Iran) using SPI method. international Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 6, 228-230.
Gaskin, J. W., Speir, A., Morris, L., Ogden, L., Harris, K., Lee, D., & Das, K. (2007). Potential for pyrolysis char to affect soil moisture and nutrient status of a loamy sand soil. Proceedings of the 2007 Georgia Water Resources Conference (pp. 112-115), March 27–29, University of Georgia, Georgia.
Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of. Agronomy and Soil Science, 60, 457-470.
Herath, H., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209, 188-197.
Hillel, D. (1998). Environmental soil physics: Fundamentals, applications, and environmental considerations. USA: Academic press.
Horneck, D. A., Ellsworth, J. W., Hopkins, B. G., Sullivan, D. M., & Stevens, R. G. (2007). Managing salt-affected soils for crop production. USA: Oregon State University Extension Service, Washington State University Extension, University of Idaho Cooperative Extension System, and the U.S. Department of Agriculture cooperating.
Jeffery, S., Verheijen, F. G., Bastos, A. C., & Velde, M. (2014). A comment on ‘Biochar and its effects on plant productivity and nutrient cycling: a meta analysis: On the importance of accurate reporting in supporting a fast moving research field with policy implications. Global Change Biology Bioenergy, 6, 176-179.
Jien, S. H., & Wang, C. S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225-233.
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH 4 uptake and water holding capacity–results from a short-term pilot field study. Agriculture, Ecosystems & Environment, 140, 309-313.
Kinney, T., Masiello, C., Dugan, B., Hockaday, W., Dean, M., Zygourakis, K., & Barnes, R. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass & Bioenergy, 41, 34-43.
Knudsen, D., Peterson, G., & Pratt, P. (1982). Lithium, sodium, and potassium.In A. L. Page (Ed), Methods of soil analysis. Part 2. Chemical and microbiological properties, Agronomy Monograph 9.2 (pp. 225-246). Madison, WI, USA: American Society of Agronomy, Soil Science Society of America.
Koide, R. T., Nguyen, B. T., Skinner, R. H., Dell, C. J., Peoples, M. S., Adler, P. R., & Drohan, P. J. (2015). Biochar amendment of soil improves resilience to climate change. Global Change Biology Bioenergy, 7, 1084-1091.
Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158, 443-449.
Lattao, C., Cao, X., Mao, J., Schmidt-Rohr, K., & Pignatello, J. J. (2014). Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. Environmental Science & Technology, 48, 4790-4798.
Lehmann, J. (2007). Bio energy in the black. Frontiers in Ecology and the Environment, 5, 381-387.
Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and Adaptation Strategies for Global Change, 11, 395-419.
Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010a). Fate of soil applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16, 1366-1379.
Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010b). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333, 117-128.
Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2012). Nutrient leaching in a Colombian savanna Oxisol amended with biochar. Journal of Environmental Quality, 41, 1076-1086.
Major, J., Steiner, C., Downie, A., & Lehmann, J. (2009). Biochar effects on nutrient leaching, In Lehmann, J., Joseph,S., (Eds.), Biochar for environmental management: Science and Technology (pp. 271-288). London, UK: Earthscan.
Mašek, O., Brownsort, P., Cross, A., & Sohi, S. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103, 151-155.
Munodawafa, A. (2012). The effect of rainfall characteristics and tillage on sheet erosion and maize grain yield in semiarid conditions and granitic sandy soils of Zimbabwe. Applied and Environmental Soil Science, 2012, 1-8.
Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of Soil Science and Plant Nutrition, 13, 991-1002.
Rhoades, J. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3-Chemical Methods (pp. 417-435). Wisconsin, USA: Soil Science Society of America and American Society of Agronomy.
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, USA: US Department of Agriculture.
SAS Institute Inc. 2007. SAS user's guide in statistics. 9th ed. Cary: SAS Institute, Inc.
Schoenau, J. J., & Campbell, C. A. (1996). Impact of crop residues on nutrient availability in conservation tillage systems. Canadian Journal of Plant Science, 76, 621-626.
Sohi, S., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47-82.
Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291, 275-290.
Thorburn, P. J., Probert, M. E., & Robertson, F. A. (2001). Modelling decomposition of sugar cane surface residues with APSIM–Residue. Field Crops Research, 70, 223-232.
Tuli, A., Hopmans, J. W., Rolston, D. E., & Moldrup, P. (2005). Comparison of air and water permeability between disturbed and undisturbed soils. Soil Science Society of America Journal, 69, 1361-1371.
Zhang, Y., Kendy, E., Qiang, Y., Changming, L., Yanjun, S. & Hongyong, S. (2004). Effect of soil water deficit on      evapotranspiration, crop yield and water use efficiency in the North China Plain. Agricultural Water Management, 64, 107-122.
Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, 32-39.