Al-Garni, S. M. S. )2006(. Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. African Journal of Biotechnology, 5(2), 133-142.
Andrade, S., Abreu, C., De Abreu, M., & Silveira, A. (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 26(2), 123-131.
Arriagada, C., Herrera, M., & Ocampo, J. (2005). Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water, Air, and Soil Pollution, 166(1-4), 31-47.
Ashraf, M. A., Hussain, I., Rasheed, R., Iqbal, M., Riaz, M., & Arif, M. S. (2017). Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. Journal of Environmental Management, 198, 132-143.
Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C. M., José-Yacamán, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science of the Total Environment, 515, 60-69.
Bíró, I., & Takács, T. (2007). Effects of Glomus mosseae strains of different origin on plant macro-and micronutrient uptake in Cd-polluted and unpolluted soils. Acta Agronomica Hungarica, 55(2), 183-192.
Bíró, B., Kadar, I., Lampis, S., Gullner, G., & Kőmíves, T. (2012). Inside and outside rhizosphere parameters of barley and dose-dependent stress alleviation at some chronic metal exposures. Acta Phytopathologica et Entomologica Hungarica, 47(2), 373-383.
Casella, S., Frassinetti, S., Lupi, F., & Squartini, A. (1988). Effect of cadmium, chromium and copper on symbiotic and free‐living Rhizobium leguminosarum biovar trifolii. FEMS Microbiology Letters, 49(3), 343-347.
Cassel, D., & Nielsen, D. (1986). Field capacity and available water capacity. In Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (pp. 901–926). Madison: American Society of Agronomy and Soil Science Society of America.
Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soil plant and waters. Berkeley: University of California.
Chaudhry, T. (1998). Phytoremediation: focusing on accumulator plants that remediate metal contaminated soils. Australian Journal of Ecotoxicology, 4, 3-51.
Chen, X., Wu, C., Tang, J., & Hu, S. (2005). Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 60(5), 665-671.
Chen, C., Tsyusko, O. V., McNear Jr, D. H., Judy, J., Lewis, R. W., & Unrine, J. M. (2017). Effects of biosolids from a wastewater treatment plant receiving manufactured nanomaterials on Medicago truncatula and associated soil microbial communities at low nanomaterial concentrations. Science of the Total Environment, 609, 799-806.
Cheyns, K., Peeters, S., Delcourt, D., & Smolders, E. (2012). Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency. Environmental Pollution, 164, 242-247.
Christie, P., Li, X., & Chen, B. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261(1-2), 209-217.
Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., & Castiglione, S. (2010). Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106(5), 791-802.
Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S., & Berta, G. (2005). The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59(1), 21-29.
Diaz, G., & Honrubia, M. )1993(. Infectivity of mine soils from Southeast Spain. Mycorrhiza, 4(2), 85-88.
Driver, J. D., Holben, W. E., & Rillig, M.C. (2005(. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37(1), 101-106.
Firmin, S., Labidi, S., Fontaine, J., Laruelle, F., Tisserant, B., Nsanganwimana, F., Pourrut, B., Dalpé, Y., Grandmougin, A., & Douay, F. )2015(. Arbuscular mycorrhizal fungal inoculation protects Miscanthus×giganteus against trace element toxicity in a highly metal-contaminated site. Science of the Total Environment, 527, 91-99.
Gabos, M. B., Abreu, C. A. d., & Coscione, A. R. (2009). EDTA assisted phytorremediation of a Pb contamined soil: metal leaching and uptake by jack beans. Scientia Agricola, 66(4), 506-514.
Garg, N., & Bhandari, P. (2016). Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regulation, 78(3), 371-387.
Gildon, A., & Tinker, P. B. (1983). Interactions of vesicular‐arbuscular mycorrhizal infection and heavy metals in plants. New Phytologist, 95(2), 247-261.
Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489-500.
Göhre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115-1122.
Gonzalez-Chavez, M., Carrillo-Gonzalez, R., Wright, S., & Nichols, K. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130(3), 317-323.
Gu, H. H., Zhou, Z., Gao, Y. Q., Yuan, X. T., Ai, Y. J., Zhang, J. Y., Zuo, W. Z., Taylor, A. A., Nan, S. Q., & Li, F. P. (2017). The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. International Journal of Phytoremediation, 19(8), 739-745.
Hack, C. M., Porta, M., Schäufele, R., & Grimoldi, A. A. (2019). Arbuscular mycorrhiza mediated effects on growth, mineral nutrition and biological nitrogen fixation of Melilotus alba Med. in a subtropical grassland soil. Applied Soil Ecology, 134, 38-44.
Heggo, A., Angle, J., & Chaney, R. (1990). Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biology and Biochemistry, 22(6), 865-869.
Hristozkova, M., Geneva, M., Stancheva, I., Boychinova, M., & Djonova, E. (2016). Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Applied Soil Ecology, 101, 57-63.
Jiang, Q. Y., Tan, S. Y., Zhuo, F., Yang, D. J., Ye, Z. H., & Jing, Y. X. (2016). Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Applied Soil Ecology, 98, 112-120.
Joner, E., & Leyval, C. (2001). Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biology and Fertility of Soils, 33(5), 351-357.
Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed). Boca Raton: CRC press.
Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, and Soil Pollution, 169(1-4), 101-123.
Kapoor, A., & Viraraghavan, T. (1995). Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 53(3), 195-206.
Khan, A. G. (2006). Mycorrhizoremediation—an enhanced form of phytoremediation. Journal of Zhejiang University Science B, 7(7), 503-514.
Killham, K., & Firestone, M. (1983). Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant and Soil, 72(1), 39-48.
Knudsen, D., Peterson, G., & Pratt, P. )1982(. Lithium, sodium, and potassium. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 225-246). Madison: American Society of Agronomy and Soil Science Society of America.
Kupper, H., & Kroneck, P. M. (2005). Heavy metal uptake by plants and cyanobacteria. Metal Ions in Biological Systems, 44, 97-144.
Lermen, C., Morelli, F., Gazim, Z. C., da Silva, A. P., Gonçalves, J. E., Dragunski, D. C., & Alberton, O. (2015). Essential oil content and chemical composition of Cymbopogon citratus inoculated with arbuscular mycorrhizal fungi under different levels of lead. Industrial Crops and Products, 76, 734-738.
Lin, A. J., Zhang, X. H., Wong, M. H., Ye, Z. H., Lou, L. Q., Wang, Y. S., & Zhu, Y. G. (2007). Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environmental Geochemistry and Health, 29(6), 473-481.
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper1. Soil Science Society of America Journal, 42(3), 421-428.
Malar, S., Manikandan, R., Favas, P. J., Sahi, S. V., & Venkatachalam, P. (2014). Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicology and Environmental Safety, 108, 249-257.
McLean, E. (1982). Soil pH and lime requirement. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 199-224). Madison: American Society of Agronomy and Soil Science Society of America.
Meier, S., Borie, F., Bolan, N., & Cornejo, P. )2012(. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 42(7), 741-775.
Miller, R., Al-Khazraji, M., Sisson, D., & Gardiner, D. (1995). Alfalfa growth and absorption of cadmium and zinc from soils amended with sewage sludge. Agriculture, Ecosystems & Environment, 53(2) 179-184.
Miyasaka, S. C., & Habte, M. (2001). Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Communications in Soil Science and Plant Analysis, 32(7-8), 1101-1147.
Nelson, D., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 539-579). Madison: American Society of Agronomy and Soil Science Society of America.
Obbard, J., & Jones, K. (1993). The effect of heavy metals on dinitrogen fixation by Rhizobium-white colover in a range of long-term sewage sludge amended and metal-contaminated soils. Environmental Pollution, 79(2), 105-112.
Olsen, S., Sommers, L., & Page, A. (1982). Phosphorus. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 403-430). Madison: American Society of Agronomy and Soil Science Society of America.
Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199-223.
Pawlowska, T. E., & Charvat, I. (2004). Heavy metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70(11), 6643-6649.
Phillips, J. M., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161.
Powell, C. L. (2018). Field inoculation with VA mycorrhizal fungi. In Powell, C. L., & Bagyaraj, D. J. (Eds.), VA mycorrhiza (pp. 205-222). Boca Raton: CRC Press.
Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43-50.
Sigel, R., & Sigel, H. (2005). Biogeochemical cycles of elements. In Sigel, A., Sigel, H., & Sigel R. K. O. (Eds.), Ions in Biological Systems (pp. 277-313). Boca Raton: CRC Press.
Smith, S. E., Facelli, E., Pope, S., & Smith, F. A. (2010). Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326(1-2), 3-20.
Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133(1), 16-20.
Souza, L. A., López Andrade, S. A., Ribeiro Souza, S. C., & Schiavinato, M. A. (2013). Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. International Journal of Phytoremediation, 15(5), 465-476.
Sudová, R., & Vosátka, M. (2007). Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil, 296(1-2), 77-83.
Toro, M., Azcón, R., & Barea, J. (1998). The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. The New Phytologist, 138(2), 265-273.
Vance, C. P., & Gantt, J. S. (1992). Control of nitrogen and carbon metabolism in root nodules. Physiologia Plantarum, 85(2), 266-274.
Vogel-Mikuš, K., Pongrac, P., Kump, P., Nečemer, M., & Regvar, M. (2006). Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139(2), 362-371.
Waling, I., Vark, W., Houba, V., & Van der Lee, J. (1989). Soil and plant analysis, a series of syllabi, part 7: Plant analysis procedures. Wageningen, Netherlands: Wageningen, Agricultural University.
Wang, F., Lin, X., & Yin, R. (2005). Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil, 269 (1-2), 225-232.
Weissenhorn, I., & Leyval, C. (1995). Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant and Soil, 175(2), 233-238.
Wong, C. C., Wu, S. C., Kuek, C., Khan, A. G., & Wong, M. H. (2007). The role of mycorrhizae associated with vetiver grown in Pb/Zn contaminated soils: greenhouse study. Restoration Ecology, 15(1), 60-67.