Evaluation of the effects of mycorrhizal inoculation on Pb uptake and growth of alfalfa in Pb-contaminated soil

Document Type : Full Article

Authors

1 Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, I. R. Iran

2 Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, I. R. Iran

3 Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, I. R. Iran

4 Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, I. R. Iran

Abstract

Establishment of arbuscular mycorrhizal symbiosis in plant roots can affect plant physiological and morphological characteristics and may induce tolerance to heavy metals in plants grown in polluted soils; therefore, it can play an important role in phytoremediation. In present study, to investigate the effect of mycorrhizae on alfalfa growth and Pb uptake, a factorial experiment was designed with two factor: (1) plants non-inoculated (NM) or inoculated with Rhizophagus intraradices (Ri) or Funeliformis mosseae (Fm) and (2) soil non-contaminated (Pb0) and contaminated with 200 (Pb1), 400 (Pb2) and 600 (Pb3) mg kg-1 Pb2+. All plants were evenly inoculated with Sinorhizobium meliloti. The results showed that at high levels of Pb2+, both fungi compared to the NM controls enhanced root nodulation and phosphorus nutrition. Moreover, the dry weight of shoots, leaf area and chlorophyll index of the leaves were significantly increased in mycorrhizal plants compared to the NM plants. Mycorrhizal dependency increased by four- and three-folds in Ri and Fm plants, respectively, at Pb3 level in comparison with the non-polluted condition (p < 0.05).  Moreover, Pb translocation from root to the shoot was significantly declined at Pb3 level in Ri plants by 1.75-folds as compared with NM plants (p < 0.05). The comparison of the results obtained by principal component analysis demonstrated that R. intraradices symbiosis was more efficient for host plant protection against the phytotoxic effect of Pb. These results highlight the assisting role of AM fungi in protecting plants from metal toxicity and in plant establishment in Pb polluted soils.

Keywords


Article Title [Persian]

بررسی اثر مایه‌‌زنی میکوریزی بر جذب سرب و رشد گیاه یونجه (Medicago sativa L.) در خاک آلوده به سرب

Authors [Persian]

  • ستاره امانی فر 1
  • ناصر علی‏ اصغرزاد 2
  • نصرت‏ اله نجفی 2
  • مهناز استکی 3
  • شاهین اوستان 2
  • صاحبعلی بلندنظر 4
1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ج. ا. ایران
2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ج. ا. ایران
3 گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ج. ا. ایران
4 گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ج. ا. ایران
Abstract [Persian]

استقرار همزیستی میکوریز آربوسکولار در ریشه می­تواند ویژگی­های ریخت­شناسی و فیزیولوژیکی گیاهان را تحت تاثیر قرار دهد و ممکن است سبب القا مقاومت در گیاهان رشد یافته در خاک­های آلوده به فلزات سنگین گردد و متعاقباً نقش مهمی در گیاه پالایی ایفا نماید. در مطالعه حاضر به منظور بررسی اثر همزیستی میکوریزی بر رشد گیاه یونجه و جذب سرب، آزمایشی با دو فاکتور شامل (1) گیاهان بدون مایه­زنی میکوریزی (NM) و گیاهان مایه­زنی شده با دو گونه قارچ میکوریزی Rhizophagus intraradices (Ri) یا Funneliformis mosseae (Fm) و (2) خاک غیر آلوده (Pb0) یا آلوده شده با سطوح 200 (Pb1)، 400 (Pb2) و 600 (Pb3) میلی­گرم سرب بر کیلوگرم خاک طراحی شد. همه گیاهان بطور یکنواخت با باکتری Sinorhizobium meliloti مایه‌‌زنی گردیدند. نتایج نشان داد که در سطوح بالای سرب مایه‌‌زنی با هر دو گونه قارچی گره­بندی در ریشه­ها و تغذیه فسفر را در مقایسه با گیاهان بدون مایه‌‌زنی افزایش داد. همچنین وزن خشک بخش هوایی، سطح برگ و شاخص کلروفیل گیاهان مایه‌‌زنی شده با  Ri و Fm بطور معنی­داری در مقایسه با گیاهان NM بیشتر بود. وابستگی میکوریزیدر سطح Pb3 به میزان سه و چهار برابر به ترتیب در گیاهان Ri و Fm در مقایسه با شرایط بدون آلودگی بطور معنی‌‌دار (p <0.05) افزایش نشان داد. همچنین انتقال سرباز ریشه به بخش هوایی به طور معنی­داری(p <0.05) به میزان 75/1 برابر در گیاهان Ri در سطح Pb3 کاهشیافت. مقایسه نتایج حاصل از تحلیل مؤلفه­های اصلینشان داد که همزیستیR. intraradices برای حفاظت از گیاه میزبان در برابر اثر سمی سرب مؤثرتر بود. این نتایج نقش مهم قارچ­های AM در حفاظت از گیاهان در برابر سمیت فلزات و استقرار گیاه در خاک­های آلوده به سرب را نشان می­دهد. 

Keywords [Persian]

  • میکوریز آربوسکولار
  • یونجه
  • گیاه پالایی
  • تحلیل مؤلفه اصلی
  • شاخص انتقال
Al-Garni, S. M. S. )2006(. Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. African Journal of Biotechnology, 5(2), 133-142.
Andrade, S., Abreu, C., De Abreu, M., & Silveira, A. (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 26(2), 123-131.
Arriagada, C., Herrera, M., & Ocampo, J. (2005). Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water, Air, and Soil Pollution, 166(1-4), 31-47.
Ashraf, M. A., Hussain, I., Rasheed, R., Iqbal, M., Riaz, M., & Arif, M. S. (2017). Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. Journal of Environmental Management, 198, 132-143.
Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C. M., José-Yacamán, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science of the Total Environment, 515, 60-69.
Bíró, I., & Takács, T. (2007). Effects of Glomus mosseae strains of different origin on plant macro-and micronutrient uptake in Cd-polluted and unpolluted soils. Acta Agronomica Hungarica, 55(2), 183-192.
Bíró, B., Kadar, I., Lampis, S., Gullner, G., & Kőmíves, T. (2012). Inside and outside rhizosphere parameters of barley and dose-dependent stress alleviation at some chronic metal exposures. Acta Phytopathologica et Entomologica Hungarica, 47(2), 373-383.
Casella, S., Frassinetti, S., Lupi, F., & Squartini, A. (1988). Effect of cadmium, chromium and copper on symbiotic and free‐living Rhizobium leguminosarum biovar trifolii. FEMS Microbiology Letters, 49(3), 343-347.
Cassel, D., & Nielsen, D. (1986). Field capacity and available water capacity. In Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (pp. 901–926). Madison: American Society of Agronomy and Soil Science Society of America.
Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soil plant and waters. Berkeley: University of California.  
Chaudhry, T. (1998). Phytoremediation: focusing on accumulator plants that remediate metal contaminated soils. Australian Journal of Ecotoxicology, 4, 3-51.
Chen, X., Wu, C., Tang, J., & Hu, S. (2005). Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 60(5), 665-671.
Chen, C., Tsyusko, O. V., McNear Jr, D. H., Judy, J., Lewis, R. W., & Unrine, J. M. (2017). Effects of biosolids from a wastewater treatment plant receiving manufactured nanomaterials on Medicago truncatula and associated soil microbial communities at low nanomaterial concentrations. Science of the Total Environment, 609, 799-806.
Cheyns, K., Peeters, S., Delcourt, D., & Smolders, E. (2012). Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency. Environmental Pollution, 164, 242-247.
Christie, P., Li, X., & Chen, B. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261(1-2), 209-217.
Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., & Castiglione, S. (2010). Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106(5), 791-802.
Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S., & Berta, G. (2005). The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59(1), 21-29.
Diaz, G., & Honrubia, M. )1993(. Infectivity of mine soils from Southeast Spain. Mycorrhiza, 4(2), 85-88.
Driver, J. D., Holben, W. E., & Rillig, M.C. (2005(. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37(1), 101-106.
Firmin, S., Labidi, S., Fontaine, J., Laruelle, F., Tisserant, B., Nsanganwimana, F., Pourrut, B., Dalpé, Y., Grandmougin, A., & Douay, F. )2015(. Arbuscular mycorrhizal fungal inoculation protects Miscanthus×giganteus against trace element toxicity in a highly metal-contaminated site. Science of the Total Environment, 527, 91-99.
Gabos, M. B., Abreu, C. A. d., & Coscione, A. R. (2009). EDTA assisted phytorremediation of a Pb contamined soil: metal leaching and uptake by jack beans. Scientia Agricola, 66(4), 506-514.
Garg, N., & Bhandari, P. (2016). Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regulation, 78(3), 371-387.
Gildon, A., & Tinker, P. B. (1983). Interactions of vesicular‐arbuscular mycorrhizal infection and heavy metals in plants. New Phytologist, 95(2), 247-261.
Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489-500.
Göhre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115-1122.
Gonzalez-Chavez, M., Carrillo-Gonzalez, R., Wright, S., & Nichols, K. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130(3), 317-323.
Gu, H. H., Zhou, Z., Gao, Y. Q., Yuan, X. T., Ai, Y. J., Zhang, J. Y., Zuo, W. Z., Taylor, A. A., Nan, S. Q., & Li, F. P. (2017). The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. International Journal of Phytoremediation, 19(8), 739-745.
Hack, C. M., Porta, M., Schäufele, R., & Grimoldi, A. A. (2019). Arbuscular mycorrhiza mediated effects on growth, mineral nutrition and biological nitrogen fixation of Melilotus alba Med. in a subtropical grassland soil. Applied Soil Ecology, 134, 38-44.
Heggo, A., Angle, J., & Chaney, R. (1990). Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biology and Biochemistry, 22(6), 865-869.
Hristozkova, M., Geneva, M., Stancheva, I., Boychinova, M., & Djonova, E. (2016). Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Applied Soil Ecology, 101, 57-63.
Jiang, Q. Y., Tan, S. Y., Zhuo, F., Yang, D. J., Ye, Z. H., & Jing, Y. X. (2016). Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Applied Soil Ecology, 98, 112-120.
Joner, E., & Leyval, C. (2001). Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biology and Fertility of Soils, 33(5), 351-357.
Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed). Boca Raton: CRC press.
Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, and Soil Pollution, 169(1-4), 101-123.
Kapoor, A., & Viraraghavan, T. (1995). Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 53(3), 195-206.
Khan, A. G. (2006). Mycorrhizoremediation—an enhanced form of phytoremediation. Journal of Zhejiang University Science B, 7(7), 503-514.
Killham, K., & Firestone, M. (1983). Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant and Soil, 72(1), 39-48.
Knudsen, D., Peterson, G., & Pratt, P. )1982(. Lithium, sodium, and potassium. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 225-246). Madison: American Society of Agronomy and Soil Science Society of America.
Kupper, H., & Kroneck, P. M. (2005). Heavy metal uptake by plants and cyanobacteria. Metal Ions in Biological Systems, 44, 97-144.
Lermen, C., Morelli, F., Gazim, Z. C., da Silva, A. P., Gonçalves, J. E., Dragunski, D. C., & Alberton, O. (2015). Essential oil content and chemical composition of Cymbopogon citratus inoculated with arbuscular mycorrhizal fungi under different levels of lead. Industrial Crops and Products, 76, 734-738.
Lin, A. J., Zhang, X. H., Wong, M. H., Ye, Z. H., Lou, L. Q., Wang, Y. S., & Zhu, Y. G. (2007). Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environmental Geochemistry and Health, 29(6), 473-481.
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper1. Soil Science Society of America Journal, 42(3), 421-428.
Malar, S., Manikandan, R., Favas, P. J., Sahi, S. V., & Venkatachalam, P. (2014). Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicology and Environmental Safety, 108, 249-257.
McLean, E. (1982). Soil pH and lime requirement. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 199-224). Madison: American Society of Agronomy and Soil Science Society of America.
Meier, S., Borie, F., Bolan, N., & Cornejo, P. )2012(. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 42(7), 741-775.
Miller, R., Al-Khazraji, M., Sisson, D., & Gardiner, D. (1995). Alfalfa growth and absorption of cadmium and zinc from soils amended with sewage sludge. Agriculture, Ecosystems & Environment, 53(2) 179-184.
Miyasaka, S. C., & Habte, M. (2001). Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Communications in Soil Science and Plant Analysis, 32(7-8), 1101-1147.
Nelson, D., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 539-579). Madison: American Society of Agronomy and Soil Science Society of America.
Obbard, J., & Jones, K. (1993). The effect of heavy metals on dinitrogen fixation by Rhizobium-white colover in a range of long-term sewage sludge amended and metal-contaminated soils. Environmental Pollution, 79(2), 105-112.
Olsen, S., Sommers, L., & Page, A. (1982). Phosphorus. In Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 403-430). Madison: American Society of Agronomy and Soil Science Society of America.
Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199-223.
Pawlowska, T. E., & Charvat, I. (2004). Heavy metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70(11), 6643-6649.
Phillips, J. M., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161.
Powell, C. L. (2018). Field inoculation with VA mycorrhizal fungi. In Powell, C. L., & Bagyaraj, D. J. (Eds.), VA mycorrhiza (pp. 205-222). Boca Raton: CRC Press.
Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43-50.
Sigel, R., & Sigel, H. (2005). Biogeochemical cycles of elements. In Sigel, A., Sigel, H., & Sigel R. K. O. (Eds.), Ions in Biological Systems (pp. 277-313). Boca Raton: CRC Press.
Smith, S. E., Facelli, E., Pope, S., & Smith, F. A. (2010). Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326(1-2), 3-20.
Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133(1), 16-20.
Souza, L. A., López Andrade, S. A., Ribeiro Souza, S. C., & Schiavinato, M. A. (2013). Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. International Journal of Phytoremediation, 15(5), 465-476.
Sudová, R., & Vosátka, M. (2007). Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil, 296(1-2), 77-83. 
Toro, M., Azcón, R., & Barea, J. (1998). The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. The New Phytologist, 138(2), 265-273.
Vance, C. P., & Gantt, J. S. (1992). Control of nitrogen and carbon metabolism in root nodules. Physiologia Plantarum, 85(2), 266-274.
Vogel-Mikuš, K., Pongrac, P., Kump, P., Nečemer, M., & Regvar, M. (2006). Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139(2), 362-371.
Waling, I., Vark, W., Houba, V., & Van der Lee, J. (1989). Soil and plant analysis, a series of syllabi, part 7: Plant analysis procedures. Wageningen, Netherlands: Wageningen, Agricultural University.
Wang, F., Lin, X., & Yin, R. (2005). Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil, 269 (1-2), 225-232.
Weissenhorn, I., & Leyval, C. (1995). Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant and Soil, 175(2), 233-238.
Wong, C. C., Wu, S. C., Kuek, C., Khan, A. G., & Wong, M. H. (2007). The role of mycorrhizae associated with vetiver grown in Pb/Zn contaminated soils: greenhouse study. Restoration Ecology, 15(1), 60-67.