Susceptibility of immature stages of a biocontrol agent, Cheilomenes sexmaculata, to imidacloprid and pyriproxyfen

Document Type : Full Article

Authors

1 Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, I.R.Iran,

2 Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, I. R. Iran

Abstract

Chemical control is one of the important strategies in agricultural pest management because of easy operation, availability and fast control of pests. On the other hand, the environment has been exposed to various types of pesticides and pollutants which are growing daily. The persistent effects of residual pesticides commonly used cause numerous problems for non-target organisms especially parasitoids and predators. In this research, the effects of pyriproxyfen and imidacloprid on Cheilomenes sexmaculata (F.) (Coleoptera: Coccinellidae) were studied. The eggs of the ladybird beetle were treated with each pesticide in three concentrations by dipping method. Maximum field recommended concentration (MFRC=50 mg/L), 2/1 MFRC (to simulate multiple treatments) and 1/2 MFRC (to test the sublethal effects) were used for pyriproxyfen and 1/1 MFRC (140 mg/L), 1/2 MFRC (70 mg/L) and 1/4 MFRC (35 mg/L) were used for imidacloprid. The highest mortality of the first instar larvae was observed in imidacloprid at MFRC and pyriproxyfen at 2/1 MFRC. Also, maximum influence on fertility was observed at 2/1 MFRC of pyriproxyfen and MFRC of imidacloprid with 55% and 44% reduction compared to the control, respectively. Moreover, pyriproxyfen caused significant retardation on larval development at concentrations higher than 1/2 MFRC. Both insecticides initiated a significant effects on adult eclosion compared to the control and the greatest influence was observed by imidacloprid at 1/1 MFRC with 89% reduction in adult eclosion. Although results revealed that imidacloprid has higher acute toxicity to C. sexmaculata, further results obtained from the analysis of on the life cycle parameters of C. sexmaculata also indicated that pyriproxyfen also had toxic effects on this predator. 

Keywords


Article Title [Persian]

حساسیت مراحل نابالغ یک عامل کنترل بیولوژیک، Cheilomenes sexmaculata به ایمیداکوپراید و پاپریپروکسی‌فن

Authors [Persian]

  • مهسا نظری فتح آباد 1
  • شهناز شهیدی نوقابی 2
1 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج)، رفسنجان، ج، ا، ایران
2 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج)، رفسنجان، ج، ا، ایران
Abstract [Persian]

کنترل شیمیایی یکی از مهمترین استراتژی­ها در مدیریت آفات کشاورزی می­باشد، چرا که به راحتی در دسترس بوده و به­خوبی آفات کشاورزی را کنترل می­کند. از طرفی محیط زیست در معرض انواع مختلفی از آفتکش­ها قرار می‌گیرد و میزان آلودگی آنها روی محیط زیست هر روز بیشتر می­شود. همچنین، بقایای آفتکش­های متداول که پیوسته مورد­ استفاده قرار می­گیرد مشکلات زیادی روی موجودات غیرهدف بخصوص پارازیتوئیدها و شکارگر­ها بوجود می­آورد.در این تحقیق، تاثیرات ایمیداکلوپراید و پایریپروکسی­فن روی تخم کفشدوزک Cheilomenes Sexmaculata   با روش غوطه­وری تخم مطالعه شد. غلظت­های پایریپروکسی­فن شامل بالاترین غلظت توصیه­شده در مزرعه (mg/L 50 (، دو برابر و یک دوم آن و برای ایمیداکلوپراید نیز بالاترین غلظت مزرعه )mg/L 140)، یک دوم و یک چهارم آن استفاده شد. در بالاترین غلظت ایمیداکلوپراید تخمها تفریخ نشدند و بیشترین مرگ­و­میر لارو سن اول نیز در این غلظت مشاهده شد. اما، هیچ مرگ و میری در سنین بالاتر لاروهای باقی مانده دیده نشد. دوبرابر غلظت توصیه­شده پایریپروکسی­فن و بالاترین غلظت ایمیداکلوپراید به­ترتیب با 55% و 44% کاهش در باروری نسبت به شاهد بیشترین تاثیر را داشتند. همچنین، در یک دوم بالاترین غلظت توصیه شده پایریپروکسی­فن و غلظت­های بالاتر آن رشد لاروها تاخیر معنی­­داری داشت. بعلاوه، هر دو آفتکش در مقایسه با شاهد تاثیر معنی­داری در کاهش خروج حشرات بالغ از پوسته شفیرگی داشتند، به­طوری که در بالاترین غلظت ایمیداکلوپراید 89% کاهش مشاهده شد. اگرچه نتایج به­روشنی بیانگر این­است که ایمیداکلوپراید اثرات سمی حاد برC. sexmaculata داشته است، اما با ادامه آزمایشات روی پارامترهای جدول زندگی ، نتایج نشان داد که پایریپروکسی­فن نیز دارای اثرات سمی روی این شکارگر می­باشد.

Keywords [Persian]

  • مدیریت آفات کشاورزیCheilomenes sexmaculata
  • روش غوطهوری
  • ایمیداکلوپراید
  • پایریپروکسی فن
  • سمیت
Agarwala, B. K., & Yasuda H. (2000). Competitive ability of ladybird predators of aphids: A   review of Cheilomenes sexmaculata (Fabr.) (Coleoptera: Coccinel-lidae) with a worldwide checklist of preys. Journal of Aphidology, 14, 1-20.
Aghabaglou, S., Alvandy, S., Goldasteh, Sh., & Rafiei Karahroudi, Z. (2013). Study on ovicidal and side effects of diazinon and imidacloprid on Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae). Journal of Entomology and Zoology Studies, 1, 22-26.
Azod, F., Shahidi-Noghabi S., Mahdian K., & Smagghe G. (2016). Lethal and sublethal effects of spirotetramat and abamectin against predatory beetles (Menochilus sexmaculatus) via prey (Agonoscena pistaciae) exposure, important for IPM in pistachio orchards.  Belgian Journal of Zoology, 146, 113-122.
Charmillot, P. J., Gourmelon A, Fabre A. L. & Pasquier, D. (2001). Ovicidal and larvicidal effectiveness of several insect growth inhibitors and regulators on the codling moth Cydia pomonella L. (Lep., Tortricidae). Journal of Applied Entomology, 125, 147-153.
Chen, T. Y., & Liu, T. X. (2003). Liu Susceptibility of immature stages of Chrysoperla rufilabris (Neurop., Chrysopidae) to pyriproxyfen, a juvenile hormone analog. Journal of Applied Entomology, 126(2‐3), 125-129.
Delpuech, J. M., Dupont, C., & Allemand, R. (2012). Effects of deltamethrin on the specific discrimination of sex pheromones in two sympatric Trichogramma species. Ecotoxicology and Environmental Safety, 84 32-38.
Desneux, N., Denoyelle, R., & Kaiser, L. (2006). A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere, 65, 1697-1706.
Fogel, M. N., Schneider, M. I., Desneux, N., Gonzalez, B., & Ronco, A. E. (2013). Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology,22, 1063-1071.
Grosch, D. S., & Hoffman, A. C. (1973). The vulnerability of specific cells in the oogenetic sequence of Bracon hebetor Say to some degradation products of carbamate pesticides. Environmental Entomology, 2, 1029-1032.
Hoffmann, ٍ E. J., Middleton, M., & Wise, J. C. (2008).  Ovicidal activity of organophosphate, oxadiazine, neonicotinoid and insect growth regulator chemistries on the northern strain plum curculio, Conotrachelus nenuphar. Journal of Insect Science, 8 (1),  Article 29.
Ishaaya, I., & Horowitz, A. R. (1992). Novel phenoxy juvenile-hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology, 85, 2113-2117.
Jacas, J. A., & Urmaneja, A. (2010). Biological control in citrus in Spain: from classical to conservation biological control. In Ciancio A. & Mukerji K.G. (Eds.), Integrated management of arthropod pests and insect borne diseases (pp. 61-72). Dordrecht, The Netherlands: Springer,
Johnson, M. W., & Tabashnik, B.E. (1999). Enhanced biological control through pesticide selectivity. In: Fisher,  T. D. and T. S. Bellows (Eds.), Handbook of Biological Control (pp. 297-317). New York: Academic Press.
Khan, AA., Afzal, M., Qureshi, J. A., Khan, A. M., & Raza, A. M. (2014). Botanicals, selective insecticides, and predators to control Diaphorina citri (Hemiptera: Liviidae) in citrus orchards. Insect Science, 21, 717-726.
Kramarz, P., & Stark, J. D. (2003). Population level effects of cadmium and the insecticide imidacloprid to the parasitoid, Aphidius ervi after exposure through its host, the pea aphid, Acyrthosiphon pisum (Harris). Biological Control, 3, 310-314.
Lio, T., & Chent, T. (2002). Susceptibility of immature stages of Chrysoperla rufilabris (Neurop., Chrysopidae) to pyriproxyfen, a juvenile hormone analog. Journal of Applied Entomology, 126, 125-129. doi.org/ 10.1046/ j. 1439-0418.2002.00605.x
Mehrnejad, M. R., Jalai, M. A., & Mirzaei, R. (2011). Abundance and biological parameters of Psyllophagous coccinellids in pistachio orchards. Journal of Applied Entomology, 9, 673-683.
Moscardini, V. F., Gontijo, P. D. C., Carvalho, G. A., Oliveira, R. L. D., Maia, J. B., & Silva, F. F. E. (2013). Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hemiptera: Anthocoridae). Chemosphere, 92, 490-496.
Nazari, M., Shahidi-Noghabi, S., & Mahdian, K. (2016). Effects of pyriproxyfen and imidacloprid on mortality and reproduction of Menochilus sexmaculatus (Coleoptera: Coccinellidae), predator of Agonoscena pistaciae. Journal of Crop Protection, 5, 89-98.
Omkar & Pervez A. (2002).  Predaceous coccinellids in India: Predator-prey catalogue. Oriental Insects, 38, 27- 61.
Oouchi, H. (2005). Insecticidal properties of a juvenoid, pyriproxyfen, on all life stages of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Applied Entomology and Zoollogy, 40, 145–149.
Medina, P., Budia, F., Estal, P. D., & Viñuela, E. (2005). Effects of three modern insecticides, pyriproxyfen, spinosad and tebufenozide, on survival and reproduction of Chrysoperla carnea adults. Annals of Applied Biology, 142: 55-61
Planes, L., Catalan, J., Tena, A. J., Porcuna, L., Jacas, J. A., Izquierdo, J., & Urbaneja, A. (2013). Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. Journal of Pest Science, 86, 321-327.
Rezaei, M., Talebi, K., Hoseyni naveh, V., & Kavousi, A. (2007). Impacts of the pesticides imidacloprid, propargite, and pymetrozine on Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae): IOBC and life table assays. BioControl, 52, 385-398.
Rill, S. M., Grafton-cardwell, E. E., & Morse, J. G. (2007). Effects of two insect growth regulators and a neonicotinoid on various life stage of Aphytis melinus (Hymenoptera: Aphelinidae). BioControl, 53, 579-587.
Rodrigues, R. H. F., da Silva, L. B., Rodrigues, T. F., Lopes, G. N.,  Carneiro, E., & Pavan, E. (2018). Sublethal doses of insecticides affect the fecundity and fertility of the Chrysodeixis includens?. American Journal of Plant Sciences, 9, 483-494.
Schneider, M., Smagghe, G., Pineda, S., & Vinuela, E. (2008). Studies on ecological impact of four IGR insecticides in adults of Hyposoter didymator (Hym., Ichneumonidae). Pharmacokinetics approach. Ecotoxicology, 17, 181-188.
Stanley, J., & Preetha G. (2016).  Pesticide toxicity to arthropod predators: Exposure, toxicity and risk assessment methodologies. In: Stanley, J., & Preetha G. (Eds), Pesticide toxicity to non-target organisms (pp 1-98). Dordrecht: Springer.
Sohrabi, F., Shishehbor, P., Saber, M., & Mosaddegh. M. S. (2011). Lethal and sublethal effects of buprofezin and imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae). Crop Protection, 30, 1190-1195.  
Vinson, S. B. (1974). Effect of an insect growth regulator on two parasitoide developing from treated tobacco budworm larvae. Economic Entomology, 67, 335-336.
Ware, G. W., & Whitacre, D. M. (2004). The pesticide book (6th ed.). Willoughby, Ohio: MeisterPro Information Resources.
Wrinn, K. M., Evans, S. C., & Rypstra, A. (2012). Predator cues and herbicide affect activity and emigration in agrobiont wolf spider. Chemosphere, 87, 390-396.
Zotti, M. J., Grutzmacher, A. D., Lopes, I. H., & Smagghe, G. (2013). Comparative effects of insecticides with different mechanisms of action on Chrysoperla externa (Neuroptera: Chrysopidae): Lethal, sublethal and dose-response effects. Insect Science, 20, 743-752.