Potassium status of two clayey calcareous soils treated with zeolite under wetting-drying cycles

Authors

1 Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, I. R. Iran

2 Department of Soil Science, College of Agriculture, Yasouj University, Yasouj, I. R. Iran

Abstract

Zeolite application to clayey soils may change potassium (K) pools distribution and its release rate. To test this hypothesis, two heavy-textured calcareous soils with different mineralogy (smectitic and mixed by XRD) from southern Iran were selected. Experiment was a completely randomized factorial arrangement. Treatments consisted of two soils and two zeolite levels (0 and 5%) and wetting-drying treatment. Soil samples were incubated in 50% of saturation percentage for 90 days. Then, three wetting-drying cycles were done on samples. Different forms of K and K release to 0.01 M CaCl2, HCl and CH3COOH by 12 successive 15 min extractions of soil samples were determined. Zeolite increased the content of different K forms in soil 1 (smectitic), while it increased soluble and exchangeable K and decreased non-exchangeable K in soil 2 (mixed mineralogy). This may be due to the high CEC (189 cmol(+)/kg) and K content (2.13% K2O) of the used zeolite. Wetting-drying cycles increased non-exchangeable K in soil 1 and exchangeable K in zeolite treated soils. CaCl2 extracted more K than HCl and CH3COOH solutions (682, 281 and 292 mg kg-1, respectively) because Ca ions are more efficient than H ions in replacing K from surface sites in the K-bearing minerals. Zeolite and wetting-drying had no effect on K release from soil 1 while they significantly decreased K release rate from soil 2.

Keywords


Article Title [Persian]

وضعیت پتاسیم دو خاک آهکی رسی تیمار شده با زئولیت و چرخه‌های تری و خشکی

Authors [Persian]

  • مهدی نجفی قیری 1
  • حمید رضا اولیایی 2
1 بخش علوم خاک، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، داراب، ج. ا. ایران
2 بخش علوم خاک، دانشکده کشاورزی دانشگاه یاسوج، یاسوج، ج. ا. ایران
Abstract [Persian]

کاربرد زئولیت در خاکهای رسی می‌تواند توزیع شکل‌های پتاسیم و آهنگ آزادسازی آن را تغییر دهد. جهت بررسی این امر، دو خاک آهکی با بافت سنگین و کانی‌شناسی متفاوت (اسمکتیتی و مخلوط) از جنوب ایران انتخاب گردید. آزمایش به‌صورت فاکتوریل در قالب طرح کامل تصادفی بود. تیمارها شامل دو خاک و دو سطح زئولیت (0 و 5 درصد) و تیمار تری و خشکی بود. نمونه‌های خاک به مدت 90 روز در حالت 50 درصد رطوبت اشباع نگهداری گردیدند. سپس سه چرخه تری و خشکی روی نمونه‌ها انجام شد. شکل‌های مختلف پتاسیم و مقدار آزادسازی پتاسیم به‌وسیله عصاره‌گیرهای 0/01 مولار CaCl2، HCl و CH3COOH با 12 عصاره‌گیری پیوسته 15 دقیقه‌ای نمونه‌ها اندازه‌گیری گردید. زئولیت مقدار شکل‌های مختلف پتاسیم را در خاک 1 (اسمکتیتی) افزایش داد و شکل‌های محلول و تبادلی را در خاک 2 (کانی‌شناسی مخلوط) افزایش اما پتاسیم غیرتبادلی را کاهش داد. این در نتیجه ظرفیت تبادل کاتیونی بالا (189 سانتی‌مول بر کیلوگرم) و مقدار پتاسیم بالای آن (2/13 درصد اکسید پتاسیم) می‌باشد. چرخه‌های تری و خشکی مقدار پتاسیم غیرتبادلی را در خاک 1 و مقدار پتاسیم تبادلی را در خاکهای تیمار شده با زئولیت افزایش داد. عصاره‌گیر CaCl2 پتاسیم بیشتری را نسبت به عصاره‌گیرهای HCl و CH3COOH  استخراج کرد (به‌ترتیب 682، 281 و 292 میلی‌گرم بر کیلوگرم)؛ زیرا یون‌های کلسیم کاراتر از یون‌های هیدوروژن در تبادل پتاسیم از سطوح کانی‌های پتاسیم‌دار هستند. زئولیت و چرخه‌های تری و خشکی تأثیری بر آزادسازی پتاسیم از خاک 1 نداشت اما سرعت آزادسازی پتاسیم از خاک 2 را به‌طور معنی‌داری کاهش داد.
 

Keywords [Persian]

  • آزادسازی پتاسیم
  • چرخه‌های تری و خشکی زئولیت
  • خاکهای آهکی
Balali, M. R., & Malakouti, M.J. (1998). Study of exchangeable K changes in agricultural soils of Iran. Soil Water, 12(3), 59–70 [in Persian].
Barros, M., Arroyo, P., Sousa-Aguiar, E., & Tavares, C. (2004). Thermodynamics of the Exchange Processes between K+, Ca2+ and Cr3+ in Zeolite NaA. Adsorption, 10(3), 227-235.
Chapman, H. D. (1965). Cation exchange capacity. In Black, C. A. (Ed), Methods of soil analysis. Part 2. (pp. 891–901). Madison (WI): American Society of Agronomy.
Filcheva, E. G., & Tsadilas, C.D. (2002). Influence of clinoptilolite and compost on soil properties. Communications of Soil Science and Plant Analysis, 33(3&4), 595–607.
Hagin, J., & Feigenbaum, S. (1962). Estimation of available potassium reserves in soils. Berne (Switzerland): Potassium Symposium, International Potash Institute. pp. 219–227.
Helmke, P. A., & D. L. Sparks. (1996). Methods of soil analysis, Part III: Chemical methods. Madison, Wisconsin, USA: American Society of Agronomy.
Jackson, M. L. (1975). Soil chemical analysis: advanced course. Madison, Wisconsin, USA: University of Wisconsin, College of Agriculture, Department of Soil Science.
Jalali, M. (2005). Release kinetics of nonexchangeable potassium in calcareous soils. Communication in Soil Science and Plant Analysis, 36(13-14), 1903-1917.
Jalali, M. (2006). Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. Geoderma, 135(0), 63-71.
Kittrick, J. A., & E. W. Hope. (1963). A procedure for the particle size separation of soils for X-ray diffraction analysis. Soil Science, 96, 312-325.
Lopez-Pineiro, A., & Navarro, A.G. (1997). Potassium release kinetics and availability in unfertilized Vertisols of southwestern Spain. Soil Science, 162(12), 912-918.
McLean, E. O., & Watson, M.E. (1985). Soil measurements of plant-available potassium. In Munson, R. D. (Ed), Potassium in agriculture (pp. 227–308). Madison (WI): Soil Science Society of America.
Najafi-Ghiri, M. (2014). Effects of zeolite and vermicompost applications on potassium release from calcareous soils. Soil & water Research, 9, 31-37.
Najafi-Ghiri, M, & Abtahi, A. (2012). Factors affecting potassium fixation in calcareous soils of southern Iran. Archives of Agronomy and Soil Science, 58(3), 335-352.
Najafi-Ghiri, M, & Abtahi, A. (2013). Potassium fixation in soil size fractions of arid soils. Soil and Water Research, 8(2), 49-55.
Najafi-Ghiri, M., & Jaberi, H. R. (2013). Effect of soil minerals on potassium release from soil fractions by different extractants. Arid Land Research and Management, 27(2), 111-127.
Najafi-Ghiri, M., Abtahi, A., & Jaberian, F. (2011a). Factors affecting potassium release in calcareous soils of southern Iran. Soil Research, 49(6), 529-537.
Najafi-Ghiri, M., Abtahi, A., Karimian, N., Owliaie, H., & Khormali, F. (2011b). Kinetics of non-exchangeable potassium release as a function of clay mineralogy and soil taxonomy in calcareous soils of southern Iran. Archives of Agronomy and Soil Science, 57(4), 343-363.
Najafi-Ghiri, M., Abtahi, A., Owliaie, H., Hashemi, S. S., & Koohkan, H. (2011c). Factors affecting potassium pools distribution in calcareous soils of southern Iran. Arid Land Research and Management, 25(4), 313-327.
Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In Page, A. L. (Ed), Methods of soil analysis, Part 2 (pp. 539–579). Madison (WI): American Society of Agronomy..
Nye, P. H., & Tinker, P. B. (1977). Solute movement in the soil-root system (Vol. 4). USA: University of California Press.
Olk, D., Cassman, K., & Carlson, R. (1995). Kinetics of potassium fixation in vermiculitic soils under different moisture regimes. Soil Science Society of American Journal, 59(2), 423-429.
Panuccio, M. R., Crea, F., Sorgona, A., Caccoa, G. )2008(. Adsorption of nutrients and cadmium by different minerals: Experimental studies and modeling. Journal of Environmental Management 88, 890–898.
Rezaei, M., & Movahedi Naeini, S. (2009). Kinetics of potassium desorption from the loess soil, soil mixed with zeolite and the clinoptilolite zeolite as influenced by calcium and ammonium. Journal of Applied Science, 9(18), 3335-3342.
Rich, C. I. (1968). Mineralogy of soil potassium. In Kilmer, V. J., Younts, S. E., Brady, N. C. (Eds). The role of potassium in agriculture (pp. 79–91). Madison (WI): American Society of Agronomy.
Rowell, D. L. (1994). Soil science: Methods and applications. Harlow. Essex (UK): Longman Scientific and Technical.
Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. Handbook No. 60. Washington (DC), United States. Department of Agriculture (USDA), Soil Survey Staff. 1994. Keys to soil taxonomy. Soil Conservation Service.
Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. Washington, DC.: USDA-Natural Resources Conservation Service (NRCS). 
Sparks, D. L. (1987). Potassium dynamics in soils. Advances in soil science, 6, 1-63.
Srinivasarao, C., Rupa, T., Subba Rao, A., Ramesh, G., & Bansal, S. (2006). Release kinetics of nonexchangeable potassium by different extractants from soils of varying mineralogy and depth. Communication in Soil Science and Plant Analysis, 37(3-4), 473-491.