Evaluation of land productivity, competition and insect diversity in different intercropping patterns of sunflower (Helianthus annuus L.) and soybean (Glycine max L.) under low-input condition

Document Type : Full Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, I.R. Iran

2 Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, I.R. Iran.

3 Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, I. R. Iran

4 Department of Plant Production and Genetics, Faculty of Agriculture, University of Tehran, Tehran, I. R. Iran.

5 Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, I. R. Iran

Abstract

Intercropping is a sustainable practice to achieve higher production with the aim to limit external inputs. A field experiment was conducted at the research farm of the Faculty of Agriculture, University of Maragheh, Maragheh, Iran, during 2016 growing seasons with ten treatments to evaluate the yield, analyze the competition and insect’s assemblages in sunflower (as main plant)/soybean (as companion plant) intercropping. Treatments included sunflower sole cropping, soybean sole cropping, replacing intercropping sunflower with soybean (50:50, 34:66, 66:34, 40:60, 60:40, 25:75) and additive intercropping of two plants (100:50 and 100:100%). Results showed that the highest sunflower grain yield (275 g m-2) was obtained in sunflower monoculture that was not significantly different with intercropping ratios of 25:75 and 60:40. Also, the highest and lowest grain yield of soybean was achieved in soybean monoculture (130.1 g m-2) and ratio of 100:50 (48.5 g m-2), respectively. The highest land equivalent ratio, monetary advantage index and intercropping advantage value was obtained in intercropping ratio of 25:75. Moreover, in all cropping patterns the aggressivity (A) and crowding ratio (CR) values of sunflower were higher than soybean, indicating that sunflower was the dominant species.  Also, the highest density for herbivores was recorded in soybean monoculture and the families of Thripidae (37.60- 43.87%) and Cicadellidae (34.01-37.71%) had the most relative density. Furthermore, intercropping of sunflower with soybean increased pollinators and natural enemies’ abundance compared with monocultures. Overall, based on the ecological, agronomical and economical indices intercropping sunflower with soybean with ratio of 25:75 is a feasible alternative method to achieve similar production with respect to monocropping.

Keywords


Article Title [Persian]

ارزیابی راندمان زمین، رقابت و تنوع حشرات در الگوهای مختلف کشت مخلوط آفتابگردان (Helianthus annuus L.) و سویا (Glycine max L.) در شرایط کم‌نهاده

Authors [Persian]

  • عبدالله جوانمرد 1
  • مصطفی امانی ماچیانی 2
  • علی استادی 3
  • اکبر سیفی 4
  • سمیرا خدایاری 5
1 1گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی دانشگاه مراغه، مراغه، ج. ا. ایران.
2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی دانشگاه مراغه، مراغه، ج. ا. ایران.
3 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی دانشگاه مراغه، مراغه، ج. ا. ایران
4 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی دانشگاه تهران، تهران، ج. ا. ایران
5 گروه گیاهپزشکی، دانشکده کشاورزی دانشگاه مراغه، مراغه، ج. ا. ایران
Abstract [Persian]

کشت مخلوط به عنوان یک روش پایدار تولید با هدف استفاده حداقل از نهاده‌های خارجی محسوب می‌شود. در همین راستا یک آزمایش مزرعه‌ای با ده تیمار به منظور ارزیابی عملکرد، واکاوی رقابت و تنوع حشرات در کشت مخلوط سویا با آفتابگردان در فصل زراعی 1395 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه مراغه اجرا شد. تیمارها شامل کشت خالص آفتابگردان (به عنوان گیاه اصلی)، کشت خالص سویا (به عنوان گیاه همراه) و نسبت‌های مختلف کشت مخلوط جایگزینی (50:50، 34:66، 66:34، 40:60، 60:40 و 25:75) و افزایشی (100:50 و 100:100) آفتابگردان- سویا بودند. نتایج نشان داد که بیشترین عملکرد دانه آفتابگردان (275 گرم در متر مربع) در کشت خالص آن بدست آمد که با الگوی کشت 25 درصد آفتابگردان+ 75 درصد سویا و 60 درصد آفتابگردان+ 40 درصد سویا تفاوت معنی‌داری نداشت. همچنین بیشترین (1/130 گرم در متر مربع) و کمترین (5/48 گرم در متر مربع)  عملکرد دانه سویا به‌ترتیب در کشت خالص سویا و الگوی 100 درصد آفتابگردان+ 50 درصد سویا حاصل شد. علاوه بر این، بالاترین نسبت برابری زمین، شاخص سودمندی مالی و سودمندی کشت مخلوط در الگوی 25 درصد آفتابگردان+ 75 درصد سویا بدست آمد. همچنین در همه الگوهای کشت، غالبیت جزیی و ضریب ازدحام نسبی آفتابگردان بیشتر از سویا بود که نشان دهنده توانایی رقابت بیشتر آفتابگردان نسبت به سویا است. در ضمن بالاترین تراکم حشرات علفخوار در کشت خالص سویا ثبت شد. خانواده‌های حشرات Thripidae و Cicadellidae دارای بیشترین تراکم نسبی بودند. علاوه بر این، کشت مخلوط آفتابگردان با سویا فراوانی حشرات گرده‌افشان و دشمنان طبیعی را نسبت به کشت‌های خالص افزایش داد. همچنین بیشترین شاخص شانون در الگوی کشت مخلوط افزایشی کامل حاصل شد. به طور کلی، بر اساس شاخص­های زراعی، اکولوژیک و اقتصادی کشت مخلوط 25 درصد آفتابگردان+ 75 درصد سویا به عنوان یک روش جایگزین جهت حصول عملکردی مشابه کشت خالص آفتابگردان معرفی می­گردد.

Keywords [Persian]

  • حشرات علفخوار
  • کشت مخلوط
  • کارایی استفاده از زمین
  • شاخص شانون
  • نسبت برابری زمین
Abbasi Surki, A., Sharifzadeh, F., & Tavakkol Afshari, R. (2012). Effect of drying conditions and harvest time on soybean seed viability and deterioration under different storage temperature. African Journal of Agricultural Research, 7(36), 5118-5127.
Agegnehu, G., Ghizaw, A., & Sinebo, W. (2006). Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. European Journal of Agronomy, 25(3), 202-207.
Amani Machiani, M., Javanmard, A., Morshedloo, M. R., & Maggi, F. (2018a). Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean. Industrial Crops and Products, 111, 743-754.
Amani Machiani, M., Javanmard, A., Morshedloo, M. R., & Maggi, F. (2018b). Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita L.) intercropped with faba bean (Vicia faba L.). Journal of Cleaner Production, 171, 529-537.
Andow, D. A. (1991). Vegetational diversity and arthropod population response. Annual Review of Entomology, 36(1), 561-586.
Berndt, L. A., & Wratten, S. D. (2005). Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biological Control, 32(1), 65-69.
Biabani, A., Hashemi, M., & Herbert, S. (2012). Agronomic performance of two intercropped soybean cultivars. International Journal of Plant Production, 2(3), 215-222.
Brennan, E. B. (2013). Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids. Biological Control, 65(3), 302-311.
Brennan, E. B. (2016). Agronomy of strip intercropping broccoli with alyssum for biological control of aphids. Biological Control, 97, 109-119.
Brown, M. W. (2012). Role of biodiversity in integrated fruit production in eastern North American orchards. Agricultural and Forest Entomology, 14(1), 89-99.
Caballero, R., Goicoechea, E., & Hernaiz, P. (1995). Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch. Field Crops Research, 41(2), 135-140.
Chapagain, T., & Riseman, A. (2014). Barley–pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crops Research, 166, 18-25.
Dassou, A. G., Carval, D., Dépigny, S., Fansi, G., & Tixier, P. (2015). Ant abundance and Cosmopolites sordidus damage in plantain fields as affected by intercropping. Biological Control, 81, 51-57.
De La Fuente, E.B., Suárez, S.A., Lenardis, A.E., & Poggio, S.L., (2014). Intercropping sunflower and soybean in intensive farming systems: Evaluating yield advantage and effect on weed and insect assemblages. NJAS - Wageningen Journal of Life Sciences, 70-71, 47-52.
Dhima, K., Lithourgidis, A., Vasilakoglou, I., & Dordas, C. (2007). Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 100(2-3), 249-256.
Duchene, O., Vian, J.-F., & Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, 240, 148-161.
FAO, FAO Statistical Year book 2014: World food and agriculture, 2014.
Ghosh, P. (2004). Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Research, 88(2-3), 227-237.
Gliessman, S. R., & Engles, E. W. (1999). Field and Laboratory Investigations in Agroecology, A Manual to Accompany Agroecology: Ecological Processes in Sustainable Agriculture: Ann Arbor Press.
Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical Reviews in Plant Sciences, 30(1-2), 95-124.
Hauggaard-Nielsen, H., Gooding, M., Ambus, P., Corre-Hellou, G., Crozat, Y., Dahlmann, C., & Monti, M. (2009). Pea–barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 113(1), 64-71.
Herridge, D. F., Bergersen, F. J., & Peoples, M. B. (1990). Measurement of nitrogen fixation by soybean in the field using the ureide and natural 15N abundance methods. Plant Physiology, 93(2), 708-716.
Hurej, M., Twardowski, J. P., & Kozak, M. (2013). Weevil (Coleoptera: Curculionidae) assemblages in the fields of narrow-leafed lupin sown as pure stand and intercropped with spring triticale. Zemdirbyste, 100, 393-400.
Jones, G. A., & Gillett, J. L. (2005). Intercropping with sunflowers to attract beneficial insects in organic agriculture. Florida Entomologist, 88(1), 91-96.
Kassam, A., & Brammer, H. (2013). Combining sustainable agricultural production with economic and environmental benefits. The Geographical Journal, 179, 11–18.
Lenardis, A., Morvillo, C., Gil, A., & de la Fuente, E. (2011). Arthropod communities related to different mixtures of oil (Glycine max L. Merr.) and essential oil (Artemisia annua L.) crops. Industrial Crops and Products, 34(2), 1340-1347.
Lithourgidis, A., Vlachostergios, D., Dordas, C., & Damalas, C. (2011). Dry matter yield, nitrogen content, and competition in pea–cereal intercropping systems. European Journal of Agronomy, 34(4), 287-294.
Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., & Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models: a review. Agronomy for Sustainable Development, 29(1), 43-62.
Midya, A., Bhattacharjee, K., Ghose, S., & Banik, P. (2005). Deferred seeding of blackgram (Phaseolus mungo L.) in rice (Oryza sativa L.) field on yield advantages and smothering of weeds. Journal of Agronomy and Crop Science, 191(3), 195-201.
Monti, M., Pellicanò, A., Santonoceto, C., Preiti, G., & Pristeri, A. (2016). Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crops Research, 196, 379-388.
Nassiri Mahallati, M., Koocheki, A., Mondani, F., Feizi, H., & Amirmoradi, S. (2015). Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. Journal of Cleaner Production, 106, 343–350.
Neugschwandtner, R. W., & Kaul, H.-P. (2015). Nitrogen uptake, use and utilization efficiency by oat–pea intercrops. Field Crops Research, 179, 113-119.
Odo, P. (1991). Evaluation of short and tall sorghum varieties in mixtures with cowpea in the Sudan savanna of Nigeria: land equivalent ratio, grain yield and system productivity index. Experimental Agriculture, 27(4), 435-441.
Ofori, F., & Stern, W. R. (1987). Cereal–legume intercropping systems. Advances in Agronomy, 41, 41-90.
Pratap, A., Gupta, S. K., Kumar, J., Mehandi, S., & Pandey, V. R. (2012). Soybean. In Gupta S.K. (Ed.), Breeding Oilseed Crops for Sustainable Production (pp. 293–315). London: Academic Press.
Parolin, P., Bresch, C., Desneux, N., Brun, R., Bout, A., Boll, R., & Poncet, C. (2012). Secondary plants used in biological control: a review. International Journal of Pest Management, 58(2), 91-100.
Singh, R., Ahlawat, I., & Sharma, N. (2015). Resource use efficiency of transgenic cotton and peanut intercropping system using modified fertilization technique. International Journal of Plant Production, 9(4), 523-540.
Tylianakis, J. M., Didham, R. K., & Wratten, S. D. (2004). Improved fitness of aphid parasitoids receiving resource subsidies. Ecology, 85(3), 658-666.
Vega, C. R., Andrade, F. H., Sadras, V. O., Uhart, S. A., & Valentinuz, O. R. (2001). Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Science, 41(3), 748-754.