Analysis of 2,4-D residues in soil profile using HYDRUS-1D model

Document Type : Full Article

Authors

Department of Water Engineering, College of Agriculture, Shiraz University Shiraz, I. R. Iran

Abstract

ABSTRACT- Despite the benefits of herbicides, their persistence in soil can harm other plants in next rotations and contaminate ground water. The main purpose of this research is to simulate 2,4-dichlorophenoxyaceticacid(2,4-D) movement in silty clay loam soil using HYDRUS-1D model in a corn root zone. The maximum contaminant level goal, MCLG, of 2,4-D in water resources is 10 ppb. The 3.5 kg a.i ha-1 of 2,4-D was applied to the experimental field under two irrigation treatments including normal and deficit irrigation. The presence of 2,4-D along with soil water content was measured in soil profile at different depths during the growing season at 8, 13, 23, 30, 37 and 57 days after application. Both measured and simulated data showed that 2,4-D concentrations reduced from top to bottom of soil profile, maximum 40 cm in both irrigation treatments. The 2,4-D residues in normal and deficit irrigation were used for calibration and validation of HYDRUS-1D model, respectively. In general, total measured and simulated 2,4-D concentration in normal irrigation treatment were 68.94 and 64.96 mg kg-1and in deficit irrigation treatment were 74.3 and 74.0 mg kg-1, respectively. Statistical parameters including NRMSE, CRM and d were used for comparison of measured and simulated data. These parameters were 0.267, 0.77 and 0.846 for normal irrigation and 0.189, -0.02 and 0.937 for deficit regime, respectively. Therefore, the results showed a good agreement between measured values of herbicide residue and the values simulated using HYDRUS 1D model. The numerical simulations for deficit irrigation regime were more precise than normal irrigation because of less microbial activity due to less soil moisture. The numerical models could not simulate microbial activity with acceptable accuracy.

Keywords


Article Title [Persian]

تجزیه و تحلیل علف کش 2,4-D در نیمرخ خاک با استفاده از مدل HYDRUS-1D

Authors [Persian]

  • مسعود نوشادی
  • پریا ترکمان
گروه مهندسی آب دانشکده کشاورزی، دانشگاه شیراز ، ج. ا. ایران
Abstract [Persian]

چکیده-علیرغم فواید بسیار علف کشها، پایداری آنها در خاک می تواند به گیاهان در کشت های بعدی صدمه زده و باعث آلودگی خاک و آبهای زیر زمینی گردد. هدف اصلی این تحقیق شبیه سازی حرکت علف کش 2,4-D در یک خاک سیلتی رسی لوم با استفاده از مدل HYDRUS-1D در مزرعه ذرت می باشد. مقدار 5/3 کیلوگرم در هکتار 2,4-D خالص     تحت دو رژیم کم آبیاری و  آبیاری کامل به خاک اضافه شد و باقیمانده آن در نیمرخ خاک در 8، 13، 23،30، 37 و 57 روز پس از کاربرد اندازه گیری گردید. داده های اندازه گیری شده و شبیه سازی شده نشان داد که غلظتهای 2,4-D از سطح به عمق کاهش یافته و در هر دو رژیم آبیاری حداکثر تا عمق 40 سانتی متری خاک نشت کرد. مقادیر باقیمانده 2,4-Dدر خاک در تیمارهای آبیاری کامل و کم آبیاری بترتیب برای واسنجی و اعتبار سنجی مدل  HYDRUS-1D  استفاده شد. غلظت کل اندازه گیری شده و شبیه سازی شده در نیمرخ خاک در رژیم آبیاری کامل بترتیب 94/68 و 96/64 میلی گرم در کیلو گرم خاک و در رژیم کم آبیاری بترتیب 3/74 و 0/74 میلی گرم در کیلو گرم خاک بود. از پارامترهای آماری  d, CRM و  NRMSE برای مقایسه نتایج شبیه سازی و اندازه گیری استفاده گردید. این پارامترها برای آبیاری کامل بترتیب 85/0 ، 27 /0 ، 77/0 و  برای کم آبیاری بترتیب 94/0 ، 19/0 و 02/0 بود. بنابراین نتایج نشان داد که تطابق خوبی بین مقادیر اندازه گیری شده و شبیه سازی شده توسط مدل HYDRUS-1D  وجود داشت. نتایج شبیه سازی  برای رژیم کم آبیاری دقیقتر از آبیاری کامل بود که دلیل آن می تواند فعالیت کمتر میکروبی در خاک به دلیل کاهش رطوبت خاک در رژیم کم آبیاری باشد. به طور کلی مدلها قادر به شبیه سازی دقیق فعالیت های میکروبی نیستند. بنابراین در کم آبیاری که این فعالیت کمتر بوده است، نتایج  شبیه سازی بهتر شده است.

Keywords [Persian]

  • باقیمانده 4-D
  • ذرت
  • آبیاری
  • خاک
  • شبیه سازی
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO. Rome 300. D05109.
Aquino, A.J.A.,Tunega, D., Pasalic, H., Haberhauer, G., & Lischka, H. (2007). The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models—A theoretical study. Chemical Physics, 349(1-3), 69-76.
Armstrong, A., Matthews, A., Portwood, A., Leeds Harrison, P., & Jarvis, N. (2000). CRACK-NP: a pesticide leaching model for cracking clay soils. Agricultural Water Management, 44, 183-199.
Bernard, H.C., Chopart, P., Legube, J., & Vauclin, B. (2005). Assessment of herbicide leach- ing risk in two tropical soils of Reunion Island (France). Journal of Environmental Quality, 34(2), 534-543.
Cattaneo, M., Masson, C., & Greer, C. (1997). The influence of moisture on microbial transport, survival and 2, 4-D biodegradation with a genetically marked Burkholderia cepacia in unsaturated soil columns. Biodegradation, 8(2), 87-96.
Close, M.E., Lee, R., Sarmah, A.K., Pang, L., Dann, R., Magesan, G.N., Watt, J.P.C., & Vincent, K.W. (2008). Pesticide sorption and degradation characteristics in New Zealand soils—a synthesis from seven field. New Zealand Journal of Crop and Horticultural Science, 36, 9-30.
Darrell, W., & Nelson, L.E. (1996). Total carbon, organic carbon, and organic matter. In Parks D.L. (Ed) Methods of Soil Analysis, SSSA Book Series: 5, 982–991.
Dousset, S., Thevenot, M., Pot, V., Šimunek, J., & Andreux, F. (2007). Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns. Journal of Contaminant Hydrology, 94(3), 261-276.
Gupta, M., Garg, N., Joshi, H., & Sharma, M. (2012). Persistence and mobility of 2, 4-D in unsaturated soil zone under winter wheat crop in sub-tropical region of India. Agriculture, Ecosystems & Environment, 146(1), 60-72.
Hubbs, G.W., & Lavy, T.L. (1990). Dissipation of norflurazon and other persistent  herbicides in soil. Weed Science, 38,81-88.
Idaho Environmental Quality.2004.Appendices - Department of  Environmental Quality, <http://www. deq. idaho. gov/ media/967306-rem_ 2004_ appendix_ less_ appendix_ m.pdf> .
Jamieson, P.D., Porter, J.R., & Wilson, D.R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crop. Reserch, 27, 337–350.
Jarvis, N., Brown, C., Granitza, E. (2000). Sources of error in model predictions of pesticide leaching: a case study using the MACRO model. Agricultural Water Management, 44, 247-262.
Kodesova, R., Kocarek, M., Kodes, V., Simunek, J., & Kozak, J. (2008). Impact of soil micromorphological features on water flow and herbicide transport in soils. Vadose Zone Journal, 7(2), 798-809.
 Köhne, S., Lennartz,B., Köhne,J.M., & Šimůnek, J.(2006). Bromide transport at a tile-drained field site: Experiment, and one-and two-dimensional equilibrium and non-equilibrium numerical modeling. Journal of Hydrology, 321(1), 390-408.
Köhne, J.M., Köhne, S., & Šimůnek, J. (2009). A Review of Model Applications for Structured Soils: a) Pesticide Transport, J. Contam. Hydrol. Journal of Contaminant Hydrology, 104, 36–60.
Kucharski, J., & Wyszkowska, J. (2008). Biological properties of soil contaminated with the herbicide Apyros 75 WG. Journal of Elementology, 13(3), 357-371.
Ladu, J.L.C., & Zhang, D.R. (2011). Modeling atrazine transport in soil columns with HYDRUS-1D. Water Science and Engineering, 4(3), 258-269.
Mersie, W., & Foy, C.L. (1985). Phytotoxicity and Adsorption of Chlorsulfuron as Affected by Soil Properties. Weed Science, 33, 564–568.
Mohanty, B.P., Kanwar, R.S., & Everts, C.J. (1994). Comparison of Saturated Hydraulic Conductivity Measurement Methods for a Glacial-Till Soil. Soil Science Society of America Journal, 58(3), 672-677.
Munro, I.C., Carlo, G.L., Orr, J.C., Sund, K.G., Wilson, R.M., Kennepohl, E., Lynch, B.S., & Jablinske, M. (1992). A comprehensive, integrated review and evaluation of the scienticts evidence relating to the safety of the herbicide 2,4-D. International Journal of Toxicology, 11, 559.
Noshadi, M., Forouharfar, F., Amin, S., Maftoun, M. (2011). Measuring and Simulating 2,4-D Residues in Silty Clay Soil Profile Under Two Water Regimes Using a LEACHP Model. Journal of Iran Agricultural Research, 30, 33-46.
Pang, L., Close, M.E., Watt, J.P.C., & Vincent, K.W. (2000). Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into ground- water using HYDRUS-2D. Journal of Contaminant Hydrology, 44, 19- 46.
Pesaro, M., Widmer, F., Nicollier, G., & Zeyer, J. (2003). Effects of freeze-thaw stress during soil storage on microbial communities and methidathion degradation. Soil Biolojy Biochemi, 35, 1049-1061.
Sarmah, A.K., Close, M.E., Pang, L., Lee, R., Green, S.R. (2005). Field study of pesticide leaching in a Himatangi sand (Manawatu) and a Kiripaka bouldery clay loam (Northland). 2. Simulation using LEACHM, HYDRUS-1D, GLEAMS, and SPASMO models. Australian Journal of Soil Research, 43, 471-489.
Shen, L., Wania, F., Lei, Y.D., Teixeira, C., Muir, D.C.G., & Bidleman, T.F. (2005). Atmospheric distribution and long-range transport behavior of organochlo- rine pesticides in North America. Environmental Science & Technology, 39, 409-420.
Shukla, G., Kumar, A., Bhanti, M., Joseph, P., & Taneja, A. (2006). Organochlorine pes- ticide contamination of ground water in the city of Hyderabad. Environment International , 32, 244-247.
Simunek, J., Sejna, M., & Van Genuchten, M.T. (1998). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media, version 2.0, US Salinity Laboratory, USDA/ARS, Riverside, CA.
Simunek, J., Sejna, M., & Van Genuchten, M.T. (2005). The HYDRUS-1D software pack- age for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. University of California, Riverside, Research reports, 240.
Simunek, J. & Van Genuchten, M.T. (2008). Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone Journal, 7(2), 782-.797.
Sparks, D.L. (2003). Environmental Soil Chemistry. Academic Press.
Van Genuchten, M.T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44 (5), 892–898.
Van Genuchten, M.T., Wierenga, P., & Davidson, J. (1974). Evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media. Soil Sci. Soc. Am. Proc, 38(1), 29-35.
Walker, A. (1987). Evaluation of a simulation model for prediction of herbicide move- ment and persistence in soil. Weed Research, 27, 143-152.
Wang, Y., Merkel, B.J., Li, Y., Ye, H., Fu, S., & Ihm, D. (2007). Vulnerability of groundwater in Quaternary aquifers to organic contaminants: a case study in Wuhan City, China. Environmental Geology, 53, 479- 484.
Worrall, F., & Kolpin, D.W. (2004). Aquifer vulnerability to pesticide pollution—combining soil, land-use and aquifer properties with molecular descriptors. Journal of Hydrology, 293, 191-204.
Zelles, L., Adrin, P., Bai, Q.Y., Stepperk, K., Adrain, M.V., Fischer, K., Maier, A., & Zigler, A. (1991). Microbial activity merasured in soils stored under different temperature and humidity conditions. Soil Biology Biochemi, 23, 955-962.