Comparison of pedogenic properties of some paddy and nonpaddy soils of southern Iran

Document Type : Full Article


1 Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 Department of Soil Science, College of Agriculture, Yasoj University, Yasoj, I. R. Iran


ABSTRACT- Paddy soils make up the largest anthropogenic wetlands on earth. Present study was performed to investigate and compare soil formation of paddy soils with long-term rice cultivation history with non-paddy soils and study the effect of waterlogging on soil pedogenesis. Soil samples were taken from paddy and non-paddy soils derived from the same calcareous parent materials. Some pedogenic properties such as organic carbon (OC), clay content, iron fractions, pH, electrical conductivity (EC), cation exchange capacity (CEC), and calcium carbonate equivalent (CCE) were measured. Results revealed that paddy management had profound impact on soil formations and led to faster soil forming processes in paddy soils under flooded condition. In the studied paddy soils OC and CEC content significantly increased in surface and subsurface soils; but soil pH significantly decreased. Chemical analysis revealed significant increase of clay portion in subsurface of paddy soils and non-significant increase of EC in surface and subsurface of paddy soils. The CCE content in surface and subsurface of paddy soils was non-significantly lower than non-paddy soils. Rice cropping system greatly affected on different Fe forms; so that paddy soils had more available Fe (Feex), total Fe (Fet), and poorly crystalline Fe oxides (Feo), but lower pedogenic Fe (Fed) and crystalline Fe oxides than non-paddy soils.


Article Title [Persian]

مقایسه ویژگیهای پدوژنیکی برخی خاکهای شالیزار و غیر شالیزار جنوب ایران

Authors [Persian]

  • عبدالصمد غلامی 1
  • مجید باقرنژاد 1
  • علی ابطحی 1
  • حمید رضا اولیایی 2
1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج .ا. ایران
2 گروه علوم خاک، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ج. ا. ایران
Abstract [Persian]

چکیده- خاک های شالیزاری جزء بیشترین اراضی غرقابی ساخته دست بشر می باشند. تحقیق حاضر با هدف بررسی تشکیل و تکامل خاک های شالیزاری تحت کشت طولانی مدت برنج در مقایسه با خاک های غیرشالیزاری و بکر و مطالعه اثر شرایط غرقابی بر این خاک ها انجام شد. نمونه های خاک از خاک های شالیزار و غیرشالیزار با مواد مادری آهکی مشابه، برداشته شد. برخی ویژگی های پدوژنیکی مانند کربن آلی، مقدار رس، شکل های مختلف آهن، پ هاش، قابلیت هدایت الکتریکی، و ظرفیت تبادل کاتیونی، اندازه گیری شدند. نتایج نشان داد که غرقاب شدن  تأثیر زیادی بر تشکیل خاک داشت. تحت شرایط کشت برنج غرقاب، پویایی و تحول خاک های شالیزاری سریع تر شده؛ که منجر به تسریع تشکیل خاک ها در این مناطق می شود. تجمع کربن آلی در افق های سطحی خاک (20-0 سانتی متری)، تسریع فرایند آهک زدایی، و افزایش معنی دار مقدار رس، آهن قابل استفاده، ظرفیت تبادل کاتیونی، آهن کل، قابلیت هدایت الکتریکی، اکسیدهای آهن با تبلور کم (بی شکل)، و کاهش معنی دار پ هاش خاک، آهن پدوژنیک، اکسیدهای آهن متبلور، فرایندهای بارز در تشکیل خاک های اراضی شالیزاری مطالعه شده بودند.

Keywords [Persian]

  • واژه های کلیدی: شکل های مختلف اکسیدهای آهن
  • ویژگی های خاک
  • تاثیر شرایط غرقاب
Bouvet, A., & Toan, T.L. (2011). Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sensing of Environment, 115, 1090-1101.
Carta, D., Casula, M.F., Corrias, A., Falqui, A., Navarra, G., & Pinna, G. (2009). Structural and magnetic characterization of synthetic ferrihydrite nanoparticles. Materials Chemistry and Physics, 113, 349-355.
Cheng, Y.Q., Yang, L.Z., Cao, Z.H., & Yin, S. (2009). Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma, 151, 31-41.
Gee, G.W., & Bauder, J.W. (1986). Particle size analysis, hydrometer method. In Klute, A. et al., (Eds.), Methods of soil analysis, Part I. (pp. 404-408). Madison (WI): SSSA and ASA.
Hanke, A., Cerli, C., Muhr, J., Borken, W., & Kalbitz, K. (2013). Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils. European Journal of Soil Science, 64, 476-487.
Jaillard, B., Plassard, C., & Hinsinger, P. (2003). Measurement of H+ fluxes and concentrations in the rhizosphere. In: Rengel, Z. (Ed.), Handbook of soil acidity. New York: Marcel Dekker Inc.
Jones, A.M., Collins, R.N., Rose, J., & Waite, T.D. (2009). The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochimica et Cosmochimica Acta, 73, 4409-4422.
Kalbitz, K., Kaiser, K., Fiedler, S., Kölbl, A., Amelung, W., Bräuer, T., Cao, Z.H., Don, A., Grootes, P., Jahn, R., Schwark, L., Vogelsang, V., Wissing, L., & Kögel-Knabner, I. (2013). The carbon count of 2000 years of rice cultivation. Global Change Biology, 19, 1107–1113.
Kirk, G. (2004). The Biogeochemistry of Submerged Soils. New York: John Wiley & Sons Inc.
Kogel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Ko¨lbl, A., & Schloter, M. (2010). Biogeochemistry of paddy soils. Geoderma, 157, 1-14.
Lindsay, W.L., & Norvel, W.A. (1978). Development of a DTPA Soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421-428.
Loppert, R.H., & Suarez, D.L. (1996). Carbonate and gypsum. In Sparks, D.L. et al., (Eds.), Methods of soil analysis, Part III. 3rd ed. (pp. 437-474). Madison (WI): SSSA and ASA.
Marschner, H. (1995). Mineral nutrition of higher plants, 2rded. London: Academic Press.
McKeague, J.A., & Day, J.H. (1966). Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13-22.
Mehra, O.P., & Jackson, M.L. (1960). Iron oxide removal from soils and clays by a dithionite citrate system with sodium bicarbonate. Clays and Clay Minerals, 7, 317-327.
Nanzyo, M., Nakamaru, Y., Yamasaki, S.I., & Samonte, H.P. (1999). Effect of reducing conditions on the weathering of Fe3+-rich biotite in the new lahar deposit from Mt.pinatubo, Philippines. Soil Science, 164, 206-214.
Narteh, L.T., & Sahrawat, K.L. (1999). Influence of flooding on electrochemical and chemical properties of West African soils. Geoderma, 87, 179-207.
Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon and organic matter. In: Sparks, D.L. et al., (Eds.), Methods of soil analysis, Part III. 3rded (pp. 961-1010). Madison (WI): SSSA and ASA.
Pan, G.X, Li, L.Q, Wu, L.S., & Zhang, X.H. (2003). Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology, 10, 79-92.
Ponnamperuma, F.N. (1978). Electrochemical change in submerged soil and the growth of rice. (pp. 421-441). Philippines, Los Banos: IRRI.
Sahrawat, K.L. (2004). Organic matter accumulation in submerged soils. Advances in Agronomy, 81, 169-201.
Schwertmann, U., Schulze, D.G., & Murad, E. (1982). Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mo¨ssbauer Spectroscopy. Soil Science Society of America Journal, 46, 869-875.
Schwertmann, U., & Taylor, R.M. (1989). Iron oxides. In: Dixon, J.B. and Weed S.B. (Eds.), Minerals in soil environments. No. 1, 2nd ed. (pp. 379-438). Madison (WI): SSSA and ASA.
Soil Survey Staff, (1993). Soil survey manual. Handbook No. 18. 1st ed. Washington, DC: USDA.
Soil Survey Staff, (2014). Keys to soil taxonomy. 12th ed. Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service (USDA- NRCS).
Sposito, G., Lund, L.J., & Chang, A.C. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46, 260-264.
Stucki, J.W., Auerswald, K., Stanjek, H., & Bigham, J. (1997). Redox processes in smectites: soil environmental significance.  Advances in Geoecology, 30, 395-406.
Sumner, M.E., & Miller, W.P. (1996). Cation exchange capacity and exchange coefficients. In: Sparks D.L. et al., (Eds.), Methods of soil analysis, Part III. 3rd ed. (pp. 1201-1229). Madison (WI): SSSA and ASA.
Wagai, R., & Mayer, L.M. (2007). Sorptive stabilisation of organic matter in soils by hydrous iron oxides. Geochimica et Cosmochimica Acta, 71, 25-35.
Wissing, L., Kölbl, A., Häusler, W., Schad, P., Cao, Z.H., & Kögel-Knabner, I. (2013). Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil and Tillage Research, 126, 60-71.
Wissing, L., Kölbl, A., Schad, P., Bräuer, T., Cao, Z.H., & Kögel-Knabner, I. (2014). Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma, 228-229, 90-113.
Wissing, L., Kölbl, A., Vogelsang, V., Fu, J.R., Cao, Z.H., & Kögel-Knabner, I. (2011). Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. Catena, 87, 376-385.
Wu, J. (2011). Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. European Journal of Soil Science, 62, 29-34.
Yu, T.R. (1985). Physical chemistry of paddy soils. Berlin: Science Press, Beijing and Springer-Verlag.
Zhang, G.L., & Gong, Z.T. (1998). Fine particle and nutrient loss from terraced paddy fields in subtropical China. Transactions of 16th World Congress of Soil Science. (pp. 1-8). Montpellier, France.
Zhang, G.L., & Gong, Z.T. (2003). Pedogenic evolution of paddy soils in different soil landscape. Geoderma, 115, 15-29.
Zhang, Y., Lin, X., & Werner, W. (2003). The effect of soil flooding on the transformation of Fe oxides and the adsorption/desorption behavior of phosphate. Journal of Plant Nutrition and Soil Science, 166, 68-75.