Influence of pre-treatment on the drying process of apricots

Document Type : Full Article

Authors

Department of Biosystems Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, I. R. Iran

Abstract

ABSTRACT- Drying has been used for the preservation of fruits since ancient times. Dried apricot reduces the damages, weight and volume losses, packaging space, storage and handling costs. In this paper, the effects of hot air dryer on an Iranian apricot cultivar ”Noori” have been investigated. The experiment was conducted at three temperatures (30, 40 and 50oC), three fruit thicknesses (5, 10 and 15 mm) and two pre-treatments (sulphur dioxide and water soluble sodium meta-bisulphite (Na2S2O5)). Based on the analysis of variance, the effects of temperature, thickness, pre-treatment and their interactions on drying time were significant (P<1%). It was revealed that water soluble  reduced drying time more than sulphur dioxide. The data was fitted to eight different mathematical models. Page model was determined as the best one to explain thin layer drying of apricots by comparing the coefficient of correlation determination(R), chi-square ( ) and root mean square error (RMSE) between the observed and expected moisture ratios.

Keywords


Article Title [Persian]

بررسی اثر پیش‌تیمار بر فرایند خشک کردن زردآلو

Authors [Persian]

  • کاظم جعفری نعیمی
  • راضیه احمدی
  • محمود داوری شمس آبادی
بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنرکرمان، کرمان، ج. ا. ایران.
Abstract [Persian]

چکیده- از دیرباز از خشک کردن برای نگهداری میوه ها استفاده می شده است. زردآلوی خشک خسارت، وزن و حجم تلفات، فضای بسته بندی، انبار داری و هزینه های حمل و نقل را کاهش می دهد. در این تحقیق، اثرات خشک کن هوای داغ بر میوه زردآلوی ایرانی رقم نوری، تجزیه و تحلیل شده است. این آزمایش در سه درجه حرارت (30، 40 و 50درجه سلسیوس)، سه ضخامت (5، 10 و 15 میلی متر) و دو پیش تیمار (دی اکسید گوگرد و  متا بی سولفیت سدیم محلول در آب) انجام شد. بر اساس تجزیه و تحلیل واریانس، اثرات دما، ضخامت، پیش تیمار و اثر متقابل این عوامل بر زمان خشک شدن محصول در سطح 1٪ معنی دار بودند. مشخص شد که محلول متا بی سولفیت سدیم زمان خشک کردن را بیش از دی اکسید گوگرد کاهش می دهد. داده ها در هشت مدل مختلف ریاضی برازش داده شدند. مدل پیج به عنوان بهترین مدل برای توصیف خشک کردن لایه نازک زردآلو، با مقایسه تعیین ضریب همبستگی (R2)، مجذور کای ( ) و ریشه میانگین مربع خطا (RMSE) بین نسبت رطوبت مشاهده شده و مقدار مورد انتظار آن، مشخص شد.

Keywords [Persian]

  • واژه های کلیدی:
  • مدل‌سازی ریاضی
  • سینتیک خشک شدن
  • مدل پیج
Akpinar, E.K., Bicer, Y., & Midilli, A. (2003). Modelling and experimental study on drying of apple slices in a convective cyclone dryer. Journal of Food Process Engineering, 26(6), 515–541.
Akpinar, E.K., Bicer, Y., & Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59, 99–104.
Akpinar. E.K, (2006). Mathematical modelling of thin layer drying process under open sun of some aromatic plants. Journal of Food Engineering, 77, 864–870
AOAC. (1980). Official methods of analysis (13th Ed.). Washington, DC Association of Official Analytical Chemists.
Appropriate temperature for drying apricot is determined.
Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar energy, 59(4-6), 121-126.
Balbay, A., Sahin, O., & Ulker, H. (2013). Modelling of convective drying kinetics of pistachio kernels in a fixed drying system. Thermal science, 17 (3), 839-846.
BarbosaCanovas, G.V., & VegaMercado, H. (1996). Dehydration of Foods, (first Ed.), Chapman and Hal, NY, USA.
Bozkır, O. (2006). Thin-layer drying and mathematical modelling for washed dry apricots. Journal of Food Engineering, 77, 146–151.
Brasiello, G.A., Russo, P., Crescitelli, S., Albanese, D., & Marisa, D.M. (2013). Mathematical modelling of eggplant drying Shrinkage effect. Journal of food engineering, 114, 99-105.
Cárcel, J.A., GarcíaPérez, J.V., Sanjuán, N., & Mulet, A. (2010). Influence of pre-treatment and storage temperature on the evolution of the colour of dried persimmon. LWT Food Science and Technology, 43, 1191-1196.
Chen, Q., Bi, J., Wu, X., Yi, J., Zhou, L., & Zhou, Y. (2015). Drying kinetics and quality attributes of jujube (Zizyphusjujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT - Food Science and Technology, 64 (2), 759-766.
Doymaz, I. (2007). Air drying characteristics of tomatoes. Journal of Food engineering, 78, 1291-1297.
Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63 (3), 349–359.
Fernando, W. J.N., Low, H.C., & Ahmad, A.L. (2011). Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. Journal of Food Engineering, 102(4), 310-316.
 Henderson, S.M. (1952). A basic concept of equilibrium moisture content. Agricultural Engineering, 33, 29-32.
Karathanos, T., & Belessiotis, G. (1999). Application of a thin layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research, 74, 355–361.
Kashaninejad, M., Mortazavi, A., Safekordi. A., & Tabil. L.G. (2007). Thin-layer drying characteristics and modelling of pistachio nuts. Journal of Food Engineering, 78, 98-108.
Kouchakzadeh, A., & Shafeei, S. (2010). Modelling of microwave-convective drying of pistachios. Journal of Energy Conversion and Management, 51, 2012-2015.
 Lewis, W.K. (1921). The rate of drying of solid materials. Industrial Engineering Chemistry, 13, 427-432.
Midilli. A., & Kucuk. H. (2003). Mathematical modelling of thin layer drying of pistachio by using solar energy. Journal of Energy Conversion and Management, 1111-1112
Rosello, C., Canellas, J., Santiesteban, I., & Mulet, A. (1993). Simulation of the absorption process of sulphur dioxide in apricots. Lebensmittel- Wissenschaft Und e Technologie, 26(4), 322-328.
Seremet, L., Botez, E., Nistor, O., Andronoiu,  D.G., & Mocano, G.D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195,104-109.
 Sharma, G.P., Verma, R.C., & Pathare, P.B. (2005).Mathematical modelling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71, 282-286.
Simal, S., Femenia, A., Garau, M.C. & Rosella, C. (2005). Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328.
Togrul, I.T., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32.
Verma, L.R., Bucklin, R.A., Endan, J.B., & Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301.
Yaldiz, O., & Ertekin, C. (2001). Thin layer solar drying of some vegetables. Drying Technology, 19, 583–596.
Zecchi, B, Clavijo. L, MartnezGarreiro, J., & Gerla, P. (2011). Modelling and minimizing process time of combined convective and vacuum drying of mushrooms and parsley. Journal of Food Engineering, 104, 49–55.