AbdulBaki, A.A., & Anderson, J.D. (1970). Viability and leaching of sugars from germinating barley. Crop Science, 10(1), 31-34.
Ahmed, M., Qadeer, U., & Aslam, M.A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6(3), 594-607.
Ahmed, M., & Khurshid, Y. (2011). Does silicon and irrigation have impact on drought tolerance mechanism of sorghum?.Agricultural water management, 98(12), 1808-1812.
Ahmad, M.S.A., Javed, F., & Ashraf, M. (2007). Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regulation, 53(1), 53-63.
Belcher, E.W., & Miller, L. (1975). Influence of substrate moisture level on the germination of sweetgum and sand pine seed. In Proceedings of the Association of Official Seed Analysis, 65, 88-89.
Borjian, A.R., & Emam, Y. (2001). Effect of urea foliar feeding on grain protein content and quality in two winter wheat cultivars. Iran Agricultural Research, 20, 37-52
Cabuslay, G.S., Ito, O., & Alejar, A.A. (2002). Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science, 163(4), 815-827.
Ellis, R.H., & Roberts, E.H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9, 373-409.
Emam, Y. (2011). Cereal Production. 4th ed. Shiraz, Iran: Shiraz University Press. (In Persian).
Epstein, E. (1999). Silicon. AnnualReview of Plant Physiology, 50, 641–664.
Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29(9), 1637-1647.
Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and experimental Botany, 47(1), 39-50.
Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2), 313-321..
Gong, H.J., Randall, D.P., & Flowers, T.J. (2006). Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell & Environment, 29(10), 1970-1979.
Gong, H.J., Chen, K.M., Zhao, Z.G., Chen, G.C., & Zhou, W.J. (2008). Effects of silicon on defence of wheat against oxidative stress under drought at different developmental stages. Biologia Plantarum, 52(3), 592-596.
Gunes, A., Inal, A., Bagci, E.G., & Pilbeam, D.J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290(1-2), 103-114.
Hattori, T., Inanaga, S., An, P.S., Araki, H.P., Morita, S., Luxová, M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4), 459-466.
Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., & Morita, S. (2007). Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environmental and Experimental Botany, 60(2), 177-182.
Inanaga, S., & Okasaka, A. (1995). Calcium and silicon binding compounds in cell walls of rice shoots. Soil Science and Plant Nutrition, 41(1), 103-110.
Iqbal, M., & Ashraf, M. (2005). Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regulation, 46(1), 19-30.
Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920-931.
Lee, S.K., Sohn, E.Y., Hamayun, M., Yoon, J.Y., & Lee, I.J. (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80(3), 333-340.
Liang, Y., Chen, Q.I.N., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160(10), 1157-1164.
Liang, Y., Zhang, W., Chen, Q., & Ding, R. (2005). Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53(1), 29-37.
Liang, Y., Shen, Q., Shen, Z., & Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition, 19(1), 173-183.
Lu, C.M., Zhang, C.Y., Wen, J.Q., & Wu, G.R. (2002). Effects of nano material on germination and growth of soybean. Soybean Science, 21(3), 168-171.
Ma, J.F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397.
Mera, M.U., & Beveridge, T.J. (1993). Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. Journal of Bacteriology, 175(7), 1936-1945.
Munns, R., & James, R.A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253(1), 201-218.
RémusBorel, W., Menzies, J.G., & Bélanger, R.R. (2005). Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology, 66(3), 108-115.
Saqib, M., Zörb, C., & Schubert, S. (2008). Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35(7), 633-639.
Smedema, L.K., & Shiati, K. (2002). Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrigation and Drainage Systems, 16(2), 161-174.
TaleAhmad, S., & Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47(1), 17-27.
Wang, X., Wei, Z., Liu, D., & Zhao, G. (2011). Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Journal of Biotechnology, 10(4), 545.
Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., & Kwak, S.S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577.
Wang, X.D., OuYang, C., Fan, Z.R., Gao, S., Chen, F., & Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Science, 6, 700-708.
Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12), 1035-1059.
Zhu, J.K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124(3), 941-948.
Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-533.
Zuccarini, P. (2008). Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52(1), 157-160.
Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., & Kwak, S.S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47 (7), 570-577.
Wang, X.D., OuYang, C., Fan, Z.R., Gao, S., Chen, F., & Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Science, 6, 700-708.
Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science & Plant Analysis, 13(12), 1035-1059.
Zhu, J.K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 12 4(3), 941-948.
Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167 (3), 527-533.
Zuccarini, P. (2008). Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52 (1), 157-160.