Determining cwsi to estimate eggplant evapotranspiration and yield under greenhouse and outdoor conditions

Document Type : Full Article

Authors

1 Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, I.R. Iran

2 Department of water sciences Engineering, College of Agriculture Shahid Chamran University, Ahwaz, I. R. Iran

3 Department of Irrigation, Jahrom Universtiy, Jahrom, I.R. Iran

Abstract

ABSTRACT- The crop water stress index (CWSI) is the most common index to monitor and assess crop water stress, based on canopy temperature. To calculate CWSI, upper and lower baselines adaptable to different environments are needed. In this study, empirical and theoretical limiting baseline equations were developed to determine eggplant CWSI values at different levels of water deficit and salinity stress.  The limiting baseline and CWSI values of eggplant were obtained under different watering intervals (daily, weekly and every two weeks) and different irrigation water salinity levels (i.e. 0.8, 2.5, 5 and 7 dsm-1) for greenhouse and outdoor conditions. The impact of various levels of water deficit and salinity on total evapotranspiration, yield and CWSI was also studied. With the increase of water salinity, a decrease in the slope of lower baseline was met (from 0.195 to 0.146 in the greenhouse and from 0.134 to 0.098 in the outdoor conditions) along with a rise in the upper baseline. Increase in the levels of water deficit led to greater fluctuations in CWSI variations during the growing season. According to the Duncan's test results, CWSI values were significantly affected by water deficit and salinity in both environments

Keywords

Main Subjects


Article Title [Persian]

تعیین CWSI به منظور برآورد تبخیر-تعرق و عملکرد بادنجان تحت شرایط گلخانه و مزرعه

Authors [Persian]

  • علی اصغر قائمی 1
  • هادی معاضد 2
  • محمد رفیع رفیعی 3
  • سعید برومند نسب 2
1 بخش آبیاری، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
2 دانشگاه شهید چمران اهواز
3 دانشگاه جهرم
Abstract [Persian]

چکیده- شاخص تنش آبی گیاه (CWSI) یکی از متداول‌ترین شاخص‌های مبتنی بر دمای پوشش سبز، برای پایش و تعیین تنش آبی گیاهان می‌باشد. برای محاسبه CWSI حدود مبنای بالایی و پایینی منطبق بر محیط های مختلف مورد نیاز می‌باشد. در این پژوهش، معادلات خطوط مبنای تجربی و نظری به منظور تعیین مقادیر CWSI گیاه بادنجان در سطوح مختلف تنش آبی و شوری ارائه گردیده است. خطوط مبنا و CWSI بادنجان تحت فواصل مختلف آبیاری ( روزانه، هفتگی و دو هفته‌ای) سطوح مختلف شوری آب ( یعنی 8/0 ، 5/2، 0/5 و 0/7 دسی زیمنس بر متر ) در شرایط گلخانه و مزرعه به دست آمد. تاثیر سطوح مختلف تنش آبی و شوری بر تبخیر-تعرق کلی، عملکرد و CWSI نیز مورد مطالعه قرار گرفت. با افزایش شوری آب، کاهشی در شیب خط مبنای پایینی ( از 195/0 به 146/0 در گلخانه و از 134/0 به 098/0 مزرعه) توام با صعود خط مبنای بالایی تنش مشاهده گردید.افزایش سطوح تنش آبی به نوسانات بیشتر در مقادیر CWSI در طول فصل رشد منجر گردید. با توجه به نتایج آزمون دانکن مقادیر CWSI در هر دو محیط کشت به طور معنی داری تحت تاثیر کمبود آب و شوری می‌باشند.

Keywords [Persian]

  • واژه های کلیدی:
  • CWSI
  • بادنجان
  • تبخیر-تعرق
  • گلخانه
  • خطوط مبنای تنش
Alderfasi, A.A., & Nielsen, D.C. (2001). Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agricultural Water Management, 47, 69-75.
Ayers, R.S., & Westcot, D.W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper No. 29, Rev. 1, Rome.
BenGal, A., Agam, N., Alchanatis, V., Cohen, Y., Yermiyahu, U., Zipori, I., Presnov, E., Sprintsin, M., & Dag, A., (2009). Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery. Irrigation Science, 27, 367–376.
Blad, B.L., & Rosenberg. N.J. (1976). Measurement of crop temperature by leaf thermocouple, infrared thermometry and remotely sensed thermal imagery. Agronomy Journal, 68, 635–641.
Boyaci, H.F. (2007). Resistance resources and its inheritance against to fusarium wilt in eggplants, CukurovaUniversity, Ph D Thesis, Natural and Applied Sciences. 108 p.
Cohen, Y., Alchanatis, V., Meron, M., Saranga, Y., & Tsipris, J. (2005). Estimation of leafwater potential by thermal imagery and spatial analysis. Journal of Experimental Botany, 56, 1843−1852.
Dudley, L.M., BenGal, A., & Shani, U. (2008). Influence of plant, soil and water on the leaching fraction. Vadose Zone Journal, 7, 420–425.
Erdem, Y., Erdem, T., Orta, A. & Okursoy, H. (2005). Irrigation scheduling for watermelon with crop water stress index (CWSI). Journal Central European Agricultural, Vol.6,No.4, pp.449-460.
FAO, (2010). Food and Agriculture Organization of The United Nations. http://www.fao.org.
Glenn, D., Worthington, J., Welker, W., & McFarland, M. (1989). Estimation of peachtree water-use using infrared thermometry. Journal of the American Society for Horticultural Science, 114: 737−741.
GonzalezDugo M.P., Moran, M. S., Mateos, L., & Bryant. R. (2005). Irrigation Science, DOI 10.1007/s00271-005-0023-7.
Grant, O.M., Tronina, L., Jones, H.G., & Chaves, M.M. (2007). Exploring thermal imaging variables for the detection of stress responses in grapevine under different  irrigation regimes. Journal of Experimental Botany, 58, 815−825.
Idso, S.B. (1982). Non-water-stressed baselines: A key to measuring and interpreting  plant water stress. Agricultural Meteology, 27, 59−70.
Idso, S.B., Jackson, R.D., Pinter, P.J., JrReginato, R.J., &  Hatfield, J.L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteology, 24, 45–55.
Irmak, S., Haman, D.Z., & Bastug, R. (2000).  Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92(6), 1221–1227.
Jackson, R.D., Idso, S.B., &  Reginato, R.J. (1981). Canopy temperature as a crop water stress indicator. Water Resours Reserch, 17, 1133–1138.
James, L.G., (1988). Principles of farm irrigation system design. John Wiley and Sons. Inc., New York. 543 p.
Jensen, H.E., Svendsen, H., Jensen, S.E., & Mogensen, V.O. (1990). Canopyair temperature of crops grown under different irrigation regimes in a temperate humid climate. Irrigation Science, 11, 181–188.
Jones, H.G., Stoll, M., Santos, T., Sousa, C.D., Chaves, M. M., & Grant, O.M. (2002). Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. Journal of Experimental Botany, 53, 2249−2260.
Kar, G., & Kumar, A. (2010). Energy balance and crop water stress in winter maize under phenology-based irrigation scheduling. Irrigation Science, 28, 211–220.
Kjelgaard, J.F., Stockle, C.O., & Evans, R.G. (1996). Accuracy of canopy temperature energy balance for determining daily evapotranspiration. Irrigation Science, 16, 149-157.
Leinonen, I., Grant, O.M., Tagliavia, C.P.P., Chaves, M.M., & Jones, H.G. (2006). Estimating stomatal conductance with thermal imagery. Plant, Cell and Environment, 29, 1508−1518.
Lhomme, J.P., & Monteny, B. (2000). Theoretical relationship between stomatal resistance and surface temperatures in sparse vegetation. Agricultural and Forest Meteorology, 104, 119−131.
Möller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., & Ostrovsky, V., (2007). Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 58, 827−838.
Moriana A., Villalobos, F.J., & Fereres, E. (2002). Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficit. Plant Cell Environment, 25.
Nakayama, F.S., & Bucks, D.A. (1983). Application of a foliage temperature based crop water stress index to guayule (Parthenium argentatum). Journal of Arid Environments, 6, 269−276.
Orta, A.H., Erdem, Y., & Erdem, T. (2003). Crop water stress index for watermelon. Scientia Horticulturae, 98, 121-130.
Payero, J.O., & Irmak, S. (2006). Variable upper and lower crop water stress index baselines for corn and soybean. Irrigation Science, 25, 21–32.
Payero, J.O., Neale, C.M.U., & Wright. J.L. (2005). Non-water-stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass. Translation ASAE, 48(2), 653–661.
Roth, G. & Goyne, P., (2004). Measuring plant water status. In WATERpak, Australian Cotton CRC/CRDC (http://www.cotton.crc.org.au), p. 157-164.
Sepaskhah, A.R., & Kashefipour, S.M. (1994). Relationships between leaf water potential, CWSI, yield and fruit quality of sweet lime under drip irrigation. Agricultural Water Management, 25, 13−22.
Smith, R.C.G. (1988). Inferring stomatal resistance of sparse crops from infrared measurements of foliage temperature. Agricultural and Forest Meteorology, 42, 183−198.
Sneha, C., Santhoshkumar, A.V., & Sunil. K.M. (2013). Quantifying water stress using crop water stress index in mahogany (Swietenia macrophylla King) seedlings. CURRENT SCIENCE. 104, NO. 3.
Testi, L., Goldhamer, D.A., Iniesta, F., & Salinas. M. (2008). Crop water stress index is a sensitive water stress indicator in pistachio trees. Irrigation Science, 26, 395−405.
Wanjura, D.F., Hatfield, J.L., & Upchurch, D.R. (1990). Crop water stress index relationships with crop productivity. Irrigation Science, 11, 93−99.
Wanjura, D.F., & Upchurch, D.R.  (2000). Canopy temperature characterizations of corn and cotton water status. Translation ASAE, 43, 867–875.
Yazar, A., Howell, T.A., Dusek, D.A., & Copeland, K.S.  (1999). Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science, 18, 171–180.
Yuan, G.F., Luo, Y., Sun, X., & Tang, D. (2004). Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agricultural Water Management, 64, 29–40.
Zia, S., Spohrer, K., Du, W., Spreer, W., He, X., & Muller, J. (2010).  Conference on International Research on Food Security, Natural Resource Management and Rural Development. ETH Zurich, September, 14 – 16.
Zolnier, S., Gates, R.S., Anderson, R.G., Nokes, S.E., & Duncan, G.A. (2001). Non-water-stressed baseline as a tool for dynamic control of misting system for propagation of poinsettias. Translation ASAE, 44(1), 137–147.