Effect of tree roots on water infiltration rate into the soil

Document Type : Full Article

Authors

Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

ABSTRACT- To study the effect of tree roots on increasing water infiltration in soil and also to determine and assess the coefficients of different infiltration models, some infiltration tests were performed in three tree plantation areas in Badjgah, Fars province with different soil textures (clay loam for pear plantation, sandy loam for grape plantation, loamy sand for pine trees). In each plantation, four double rings were installed, whereas two double rings were placed under the tree in two sides of the tree truck with 50 cm distance and the other two double rings were placed on open space between the trees. Vertical infiltration of water into the soil was measured and the coefficients of five models of infiltration (i.e. Kostiakov, Kostiakov-Lewis, Philip, Soil Conservation Service (SCS) and Horton) were assessed. Furthermore, soil texture and initial soil water content were determined in these points. Results showed that all models accurately fitted to the measured values. The infiltration rate under the trees was higher than those between the trees due to the occurrence of roots and root channels that improved the rate of infiltration of water into the soil. The 180-minute infiltration under the trees increased 69% and 354% in loamy sand and clay loam, respectively compared with those on open space between the trees.

Keywords

Main Subjects


Article Title [Persian]

اثر ریشه های درخت بر سرعت نفوذ آب در خاک

Author [Persian]

  • علیرضا سپاس خواه
Abstract [Persian]

چکیده- برای بررسی اثر ریشه های درخت بر افزایش نفوذ آب در خاک و هم چنین برای تعیین و ارزیابی ضرایب معادله های مختلف نفوذ، اندازه گیری هایی در سه ناحیه درختکاری  شده در باجگاه، استان فارس با بافت های مختلف خاک (لوم رسی در باغ گلابی، لوم شنی در باغ انگور و شن لومی در جنگل کاج) انجام شد. در هر کدام از سه ناحیه،  چهار استوانه دوگانه اندازه گیری  نفوذ آب کارگذاری شد به نحوی که دو استوانه زیر تاج درخت در طرفین تنه درخت بفاصله 50 سانتی متر از آن و دو استوانه دیگر در فاصله بین درختان مابین دو درخت کارگذاری شدند. نفوذ عمودی آب در خاک در این استوانه ها اندازه گیری شد و ضرایب پنج معادله نفوذ {کوستیاکف، کوستیاکف- لوئیس، فیلیپ، سرویس حفاظت خاک (SCS) و هورتن} ارزیابی شدند. بعلاوه ، بافت خاک و مقدار اولیه آب خاک در نقاط              اندازه گیری نیز تعیین شدند. نتایج نشان داد که تمام معادله ها به داده های اندازه گیری شده بخوبی برازش داده شدند. سرعت نفوذ در زیر تاج درخت از مقدار آن در فاصله بین درختان بخاطر وجود ریشه و کانال های ریشه که باعث بهبود در سرعت نفوذ آب به خاک شده بیشتر بود. میزان نفوذ 180 دقیقه ای در زیر تاج درخت در مقایسه با فاصله بین درختان در خاکهای شن لومی و لوم رسی بترتیب 69% و 354% افزایش یافته است.

Keywords [Persian]

  • واژه های کلیدی:
  • نفوذ آب
  • ریشه درختان
  • فیلیپ
  • هورتن
  • اس- سی- اس
  • کوستیاکف
Barley, K. (1963). Influence of soil strength on growth of roots. Soil Science, 96, 175–180.
Bartens, J., Day, S.D., Harris, J.R.,  Dove, J.E., & Wynn, T.M.  (2008). Can urban tree roots improve infiltration through Compacted subsoils for storm water management? Journal of Environmental Quality, 37, 2048–2057.
Bramley, H., Hutson, J., & Tyerman, S.D.  (2003). Floodwater infiltration through root channels on a sodic clay floodplain and the influence on a local tree species Eucalyptus largiflorens. Plant Soil, 253, 275–286.
Cerdà, A. (1997). Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology, 198, 209–225.
Cerdà, A. (1998). The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330.
Cresswell, H.P., & Kirkegaard, J.A. (1995). Subsoil amelioration by plant roots: The process and the evidence. Journal of Soil Research, 33, 221–239.
DeBusk, K.M. (2008). Storm water treatment by two retrofit infiltration practices. Master of Science in Biological Systems
Engineering. M.Sc. Thesis, Virginia Department of Conservation and Recreation (DCR), Virginia, Atazoni.
Dietz, M.E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water Air and Soil Pollution, 186 (1-4), 351-363.
Gregory,  J.H., Dukes, M.D., Jones, P.H., & Miller, G.L. (2006). Effect of urban soil compaction on infiltration rate. Journal of Soil and Water Conservation,61(3), 117-124.
Johnson, M.S.,  &  Lehmann, J. (2006). Double-funneling of trees: Stem flow and root-induced preferential flow. Ecoscience, 13(3), 324-333.
Kozlowski, T., & Pallardy, S. (1997). Physiology of Woody Plants. 2nd edition. San Diego, CA. Academic Press.       
Pitt, R., Lantrip, J., Harrison, R., Henry, CH.L., Xue, D., & O'Connor, T. (1999). Infiltration through disturbed urban soils and compost-amended soil effects on runoff quality and quantity.Research Report of United States Environmental Protection Agency and Office of Research and Development Washington. DC 20460.   
Sanders, R.A. (1986). Urban vegetation impacts on the urban hydrology of Dayton, Ohio. Journal of Urban Ecology, 9, 361-376.
Szabo, A., Osztoics, A., & Szilagyi, F. (2001). Natural wastewater treatment in Hungary. Water Science Technology,  44, 331–338.
Ward, R.C., & Robinson, M. (1989). Principles of Hydrology. London. McGraw-Hill.
Xiao, Q., & McPherson, E.G. (2002). Rainfall interception by Santa Monica’s municipal urban forest. Manufactured in The Netherlands,  6,  291-302.
Yunusa, I.A.M., Mele, P.M.,  Rab, M.A., Schefe, C.R., & Beverly, C.R.  (2002). Priming of soil structural and hydrological properties by native woody species, annual crops, and a permanent pasture. Journal of Soil Research, 40,  207–219.