Development of an alternative to the olsen test for determining corn plant-available phosphorus in calcareous soils

Document Type : Research Paper

Authors

Department of Soil Science, College of Agriculture, University of Tabriz, Tabriz, I. R. Iran

Abstract

In this research, several chemical extractants and modified Olsen methods were studied in 25 surface-calcareous soils (0-30 cm) for determining available phosphorus (P) for corn (Zea mays L.) plant. In this experiment, the highest correlation was obtained between extracted P by Olsen and Colwell methods (NaHCO3-extractable P) and dry weight of corn shoot (r =0.67 and 0.75, p

Keywords

Main Subjects


Article Title [Persian]

توسعه روش جایگزین آزمون اولسن جهت تعیین فسفر قابل جذب ذرت در خاک‌های آهکی

Authors [Persian]

  • محمد رضا مقصودی
  • نصرت اله نجفی
دانشگاه تبریز
Abstract [Persian]

در این تحقیق، برخی عصاره­گیرهای شیمیایی و روش­های تغییر یافته اولسن در 25 خاک آهکی سطحی (0-30 سانتی متر) برای تعیین فسفر قابل جذب گیاه ذرت  مورد مطالعه قرار گرفت. در این آزمایش، بیشترین همبستگی بین فسفر استخراج شده توسط روش­های اولسن و کالول (فسفر قابل عصاره­گیری با محلول بی کربنات سدیم) و وزن خشک بخش هوایی ذرت مشاهده شد( r =0.67,0.75 وp

Keywords [Persian]

  • خاک آهکی
  • ذرت
  • آزمون اولسن
  • فسفر
Allison, L.E., & Moodie, C.D. (1965). Carbonates. In C. A. Black (Ed.), Method of Soil Analaysis. Part3 (pp. 1379-1396). Madison, WI: American Society of Agronomy.
 Barrow, N.J., & Shaw, T.C. (1976a). Sodium bicarbonate as an extractant for soil phosphate, I. Separation of the factors affecting the amount of phosphate displaced from soil from those affecting secondary adsorption. Geoderma, 16, 91-107.
 Barrow, N.J., & Shaw, T.C. (1976b). Sodium bicarbonate as an extractant for soil phosphate, II. Effect of varying the conditions of extraction on the amount of phosphate initially displaced and on the secondary adsorption. Geoderma, 16, 109-123.
Bell, A.A.W., Bailey, J.S., Smith, R.V., & Allen, M.M. (2005). Development of an alternative to the Olsen bicarbonate-extraction test for determining plant-available phosphorus in basaltic soils. Soil Use and Management, 21, 330-336.
Chardon, W.J., Menon, R.G., & Chien, S.H. (1996). Iron Oxide imperegnated filter paper (Pi test): A review of its development and methodological research. Nutrient Cycling in Agroecosystems, 46, 42-51.
Colwell, J.D. (1963). The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Australian journal of experimental agriculture and animal. Husbandry, 3, 190-198.
Cowling, J.C., Speir, T.W., & Percival, H.J. (1987). Potential problems with the determination of Olsen and microbial P of soils due to the instability of 0.5M sodium bicarbonate. Communications in Soil Science Plant Analysis, 18, 637-652.
Delgado, A., Campillo, M.C., & Torrent, J. (2010). Limitations of the Olsen method to assess plant-available phosphorus in reclaimed marsh soils. Soil Use and Management, 26, 133-140.
Delgado, A., & Scalenghe, R. (2008). Aspects of phosphorus transfer in Europe. Journal of Plant Nutrition and Soil Science, 171, 552-575.
 Delgado, A., & Torrent, J. (1997). Phosphate-rich soils in the European Union: estimating total plant-available phosphorus. European Journal of Agronomy, 6, 205-214.
 Demetz, M., & Insam, H. (1999). Phosphorus availability in a forest soil determined with a respiratory assay compared to chemical methods. Geoderma 89, 259–271.
 Drouinean, G. (1942). Dosage rapide du calcarire actif du sol: nouvelles donnees sur la separation et la nature des fractions calcaires. Anne Agronomy, 12, 441-450.
 Franzen, D.W., Hofman, V.L.,Cihacek, J.L., & Swenson, L.J. (1999). Soil nutrient relationships with topography asinfluenced by crop. Precision Agriculture, 1, 167–183.
Gee, G.W., & Bauder, J.W. (2002). Particle size analysis. In H. D. Jacob and G. Clarke Topp (Eds.), Methods of Soil Analysis. Part 4. Physical Methods (pp. 201-214). Madison, WI: Soil Science Society of America.
Hingston, F.J., Atkinson, R.J., & Posner, A.M. (1968). Specific adsorption of anions on goethite (pp. 669-678). Adelaide, Aust: Trans 9th. Int Congr. Soil Science.
Humphreys, J., Tunney, H., & Duggan, P. (2001). Comparison of extractable soil phosphorus with dry matter production and phosphorus uptake by perennial ryegrass in a pot experiment. Irish Journal of Agricultural and Food Research, 40, 45-54.
Kamparth, E.J, & Watson, M.E. (1980). Conventional soil and tissue tests for assessing the phosphorus status of soils. In   'Soil Testing and Plant Analysis'. (Ed. F.E Khasawneh et al.). (Soil Science Society of America: Madison, WI).
Kulhanek, M., Balik, J., Cerny, J., Nedved, V., & Kotkova, B. (2007). The influence of different intensities of phosphorus fertilizing on available phosphorus contents in soils and uptake by plants. Plant Soil Environ, 53, 382–387.
 Lindsay, W.L. (1979). Chemical Equilibria in Soils. In J. W. Sons (Ed.), (pp. 163-209). New York.
MacLean, A.A. (1965). Extraction of organic phosphorus from soils with sodium bicarbonate. Canadian Journal of Soil Science, 45, 165-170.
Mater, A.E., & Samman, M. (1975). Correlation between NaHCO3-extractable P and response to P fertilization in pot tests. Agronomy Journal, 67, 850-856.
 Menon, R.G., Chien, S.H., & Chardon, W.J. (1997). Iron oxide-impregnated filter paper (Pi test): II. A review of its application. Nuoqent Cycling in Agroecosystems, 47, 7-18.
Molinaa, M., Ortegaa, R., & Escudey, M. (2012). Evaluation of the AB-DTPA multiextractant in Chilean soils of different origin with special regard to available phosphorus. Archives of Agronomy and Soil Science, 58, 789–803.
Moody, P.W. (2011). Environmental risk indicators for soil phosphorus status. Soil Research, 49, 247–252.
Moody, P.W., Dickson, T., Dwyer, J.C., & Compton, B.L. (1990). Predicting yield responsiveness and phosphorus fertilizer requirements of soybeans from soil tests. Australian Journal of Soil Research, 28, 399-406.
Morgan, M.F. (1941). Chemical Soil Diagnosis by the Universal Soil Testing System. Bull, Storrs, CT.
Murphy, J., &Riley, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon and organic matter. In: D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods (pp. 961-1010). Madison, WI: Soil Science Society of America.
 Olsen, S.R., Cole, C.V., Watanabe, F.S., & Dean, L.A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Cire. 939, U. S. Gover. Prin. Office, Washington DC.
 Olsen, S.R., & Sommers, L.E. (1982). Phosphorus. In A. L. Page, et al (Eds.), Methods of Soil Analysis, 2nd ed. Part 2 (pp. 403-430). Madison, WI: Agronomy No. 9. American Society of Agronomy.
Paauw, F.V.D. (1971). An effective water extraction method for the determination of plant-availble phosphorus. Plant and Soil, 34, 467-481.
Piper, C.S., & DeVries, M.P.C. (1964). The residual value of superphosphate on a red-brown earth in South Australia. Australian Journal of Agricultural Research, 15, 234-272.
Qian, P., Schoenau, J.J., & Karamanos, R.E. (1994). Simultaneous extraction of available phosphorus and potassium with a new soil test: a modification of the Kelowna extraction. Communications in Soil Science and Plant Analysis, 25, 627-635.
 Rhoades, J.D. (1996). Salinity. Electrical conductivity and total dissolved solids. In: D. Sparks (Ed.), Methods of Soil Analysis. part3. Chemical methods (pp. 417-435). Madison WI: Soil Science Society of America.
Richards, L.A. (1954). Diagnosis and improvement of saline and alkaline soils. USDA Handbook. Number, 60, U.S. Government printing office, Washington, DC.
Shirvani, M., Shariatmadari, H., & Kalbasi, M. (2005). Phosphorus buffering capacity indices as related to soil properties and plant uptake. Journal of Plant Nutrition, 28, 537–550.
Soltanpour, P.N., & Schwab, A.P. (1977). A new soil test for simultaneous extraction of macro and micro nutrients in alkaline soils. Communications in Soil Science Plant Analysis, 8, 195-207.
Soon, Y.K. (1990). Comparison of parameters of soil phosphate availability for the northwestern Canadian prairie. Canadian Journal of Soil Science, 70, 227-237.
Stone, B. (1971). Effect of temperature and shaking rate on sodium bicarbonate soluble phosphorus. Canadian journal of soil science, 51, 312-313.
Van Rotterdam, A.M.D., Bussink, D.W., Temminghoff, E.J.M., & VanRiemsdijk, W.H. (2012). Predicting the potential of soils to supply phosphorus by integrating soil chemical processes and standard soil tests. Geoderma, 189-190, 617–626.
Waling, I., VanVark, W., Houba, V.J.G., & Vanderlee, J.J. (1989). Soil and Plant Analysis, a series of syllabi. Part 7. Plant Analysis Procedures. Netherland: Wageningen Agriculture University.
Watanabe, F.S., & Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America,  Proc 29, 677-678.
Westerman, D.T., & Ehlers, R.S. (1986). Procedural effects on NaHC03 extractable soil P (pp. 63-69). Proc. 37th Annual Fertilizer Conf, USA-ID-Boise.
Zalba, P., & Galantini, J.A. (2007). Modified soil-test methods for extractable phosphorus in acidic, neutral, and alkaline soils. Communications in Soil Science and Plant Analysis, 38, 1579–1587.