Effect of silicon application on wheat seedlings growth under water-deficit stress induced by polyethylene glycol

Document Type : Research Paper


Department of Agronomy, Ramin Agriculture and Natural Resources University, Khuzestan, I. R. Iran


Silicon is known to ameliorate the deleterious effects of drought on plant growth. We evaluated growth of wheat (Triticum aestivum L. CV. Chamran) under Water-Deficit Stress Induced by Polyethylene Glycol as affected by Si application. In this article, the effects of Si (as potassium silicate) on some parameters related to growth, chlorophyll concentration relative water content (RWC), electrolyte leakage, proline, soluble sugar, and inorganic ions in the leaves of wheat under 20% (w/v) polyethylene glycol (PEG-6000) simulative drought stress are investigated. PEG stress depressed the growth of shoot, RWC and chlorophyll concentration. Addition of 1.0 mM Si could partially improve the growth of shoot (but not root) and increase the chlorophyll concentrations of stressed plants. The proline concentration in the leaves was markedly increased under PEG stress, whereas added silicon partially reversed this. PEG stress decreased the leaf soluble sugar concentration. There were significant negative regressions between proline concentration and Shoot dry weight, supporting the view that proline accumulation is a symptom of stress damage rather than stress tolerance. Addition of Si obviously increased Si accumulation in the shoot. Analyses of K, and Ca showed no accumulation of these ions in the shoot under water stress, and added Si even increased their concentrations under water stress. These results suggest that under PEG-induced water stress conditions, increase soluble sugar and decrease electrolyte leakage, contributed to the improved wheat growth by Si.


Main Subjects

Article Title [Persian]

تاثیر کاربرد سیلیسیوم بر رشد گیاهچه ای گندم در شرایط تنش رطوبتی ناشی از پلی اتیلن گلیکول

Authors [Persian]

  • عزیز کرملاچعب
  • محمد حسین قرینه
دانشگاه خوزستان
Abstract [Persian]

سیلیسیم به‏عنوان اصلاح کننده اثرات تنش خشکی بر رشد گیاه معرف است. در این پژوهش رشد گیاه گندم (Triticum aestivum L.) رقم چمران، تحت شرایط کمبود رطوبتی ناشی از پلی‏اتیلن‏گلیکول و کاربرد سیلیسیم مورد ارزیابی قرار گرفته است. تنش کمبود رطوبت، رشد اندام هوایی گیاه، محتوای نسبی آب و غلظت کلروفیل را کاهش داد. اضافه کردن یک میلی‏مولار سیلیسیم، به‏صورت جزئی باعث بهبود رشد اندام هوایی و افزایش غلظت کلروفیل گیاهان تنش دیده شده است. غلظت پرولین برگ‏ها در شرایط تنش کمبود رطوبت افزایش قابل توجهی داشته و سیلیسیم باعث کاهش آن گردید. تنش کمبود رطوبت، غلظت قندهای محلول برگ را کاهش داد. همبستگی منفی معنی‏داری بین غلظت پرولین و وزن خشک اندام هوایی مشاهده شد که نشان می‏دهد تجمع پرولین، به عنوان یک نشانه‏ای از آسیب تنش تا تحمل آن می‏باشد. اضافه نمودن سیلیسیم، به‏طور واضح غلظت سیلیسیم اندام هوایی را افزایش داد. آنالیزهای پتاسیم و کلسیم نشان داد تجمع این یون‏های در شرایط تنش کمبود رطوبت و کاربرد سیلیسیم نسبت به شاهد کاهش یافته است. نتایج نشان داد که در شرایط تنش کمبود رطوبتی ناشی از پلی‏اتیلن‏گلیکول، رشد گیاه از طریق افزایش قندهای محلول و کاهش نشت الکتولیتی به‏وسیله سیلیسیم بهبود یافته است.

Keywords [Persian]

  • تنظیم اسمزی
  • سیلیسیم
  • تنش کمبود رطوبت
  • گندم
Adatia, M.H., & Besford, R.T. (1986). The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annals of Botany, 58, 343–51.
Al-Aghabary, K., Zhu, Z.J., & Shi, Q.H. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101–2115.
Arndt, S.K., Wanek, W., Clifford, S.C., & Popp, M. (2000). Contrasting adaptations to drought stress in field-grown Ziziphusmauritiana and Prunuspersica trees: water relations, osmotic adjustment and carbon isotope composition. Australian Journal of Plant Physiology, 27, 985– 996.
Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts, polyphennoloxidase in Beta vulgaris. Plant Physiology, 24, 1-150.
Ashraf, M., Foolad, M.R. (2007). Roles of glycine betaine and proline   in   improving  plant  abiotic    stress  resistance. Journal  Environmental  and  Experimental  Botany,  59,206–216.
Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.
Chapman, H.D., & Pratt, P.F. (1982). Methods of plant analysis. In: I. Methods of Analysis for Soils, Plants and Water. Chap. Publishers, Riverside, CA.
De-Melo, S.P., Korndorfer, G.H., Korndorfer, C.M., Lana, R.M.Q., & De-Santana, D.G. (2003). Silicon accumulation and water deficit tolerance in Brachiaria grasses. Scientia Agricola, 60(4), 755–759.
Epstein, E. (1999). Silicon. Annual review of plant physiology and plant molecular biology, 50, 641–644.
Figen, E., Ali, I., David, J.P., & Aydin, G. (2008). Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation, 55, 207–219.
Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29, 1637–1647.
Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sciences, 169, 313–321.
Gong, H.J., Chen, K.M., Zhao, Z.G., Chen, G.C., & Zhou, W.J. (2008). Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Plant Biology, 52, 592– 596.
Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxova,´ M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolour. Plant Physiology, 123, 459–466.
Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., Eneji, A.E., & Morita, S. (2007). Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environmental And Experimental Botany, 60, 177–182.
Li, Q.F., Ma, C.C., & Shang, Q.L. (2007). Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress. Chinese Journal of Applied Ecology, 18, 531–536.
Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209, 217–224.
Liang, Y.C., Sun, W., Zhu, Y.G., & Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stress in higher plants: a review. Environ. Pollution, 147, 422-428.
Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389–398.
Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11–18.
Matoh, T., Kairusmee, P., & Takahashi, E. (1986). Salt-induced damage to rice plants and alleviation effect of silicate. Soil Science and Plant Nutrition, 32, 295–304.
Mera, M.U., & Beveridge, T.J. (1993). Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. Journal of Bacteriology, 175, 1936–1945.
Mitani, N., & Ma, J.F. (2005). Uptake system of silicon in different plant species. Journal Environmental and Experimental Botany, 56, 1255-1261.
Nayyar, H., & Walia, D.P. (2003). Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biology Plant, 46, 275–279.
Ranganathan, S., Suvarchala, V., Rajesh, Y.B.R.D., Prasad, M.S., Padmakumari, A.P., & Voleti, S.R. (2006). Effect of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum, 50, 713–716.
Saqib, M., Zorb, C., & Schubert, S. (2008). Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct Plant Biology, 35, 633–639.
Shen, X., Zhou, Y., Duan, L., L i, Z.,  Eneji, A.E., & Li, J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167, 1248-1252.
Tuna, A.L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A.R. (2008). Silicon improves salinity tolerance in wheat plants. Journal Environmental and Experimental Botany, 62, 10–16.
Zhang, Z.J., Li, H.Z., Zhou, W.J., Takeuchi, Y., & Yoneyama, K. (2006). Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regulation, 49, 27–34.
Zhu, X., Gong, H., Chen, G., Wang, S., & Zhang, C. (2005). Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. Journal of Arid Environment, 62, 1–14.