Multivariate analysis of agronomic and physiological traits in a wheat Recombinant Inbred Lines (RILs) under drought stress

Document Type : Research Paper

Authors

1 Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 Department of Seed and Plant Improvement Research, Fars Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, I. R. Iran

3 0009-0006-3435-9347

Abstract

Drought stress is a primary constraint on global wheat production, necessitating the development of resilient cultivars. This study investigated the genetic basis of drought tolerance by evaluating a population of 169 wheat recombinant inbred lines (RILs) across two growing seasons under well-watered and drought-stressed conditions. We assessed seven key agronomic and physiological traits: relative water content (RWC), chlorophyll content (SPAD), plant height (PH), thousand grain weight (TGW), biological yield (BY), grain yield (GY), and harvest index (HI). Combined analysis of variance (ANOVA) revealed highly significant effects of genotype, year, and irrigation treatment on all traits. Drought stress consistently and significantly reduced all measured traits, with mean GY declining by approximately 25–30%. Correlation and principal component analyses (PCA) demonstrated structured relationships among traits under drought. Although BY remained a key determinant of yield, RWC was identified as a reliable positive indicator of sustained GY and BY under drought stress. In contrast, SPAD emerged as a prominent factor in the selection of drought-tolerant genotypes. Cluster analysis identified distinct subpopulations, highlighting RILs such as RIL_101 and RIL_41 that exhibited constitutive traits for high yield potential and robust water maintenance across environments (defined by the combination of irrigation treatment and year). Our findings demonstrated that drought resilience is governed by the maintenance of water status coupled with yield stability, rather than by vegetative greenness alone. The identified elite RILs provide valuable germplasm for breeding programs and for mapping quantitative trait loci (QTLs) associated with drought tolerance, thereby offering a pathway to the development of high-yielding, drought-resilient wheat varieties.

Graphical Abstract

Multivariate analysis of agronomic and physiological traits in a wheat Recombinant Inbred Lines (RILs) under drought stress

Keywords

Main Subjects


Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Mahboob, W., Hafeez, O. B. A., Tapera, T., Labuschagne, M., & Rizwan, M. (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40(4), 80. https://doi.org/10.1007/s11738-018-2651-6 
Ahmed, H. G. M. D., Zeng, Y., Shah, A. N., Yar, M. M., Ullah, A., & Ali, M. (2022). Conferring of drought tolerance in wheat (Triticum aestivum L.) genotypes using seedling indices. Frontiers in Plant Science, 13, 961049. https://doi.org/10.3389/fpls.2022.961049 
Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive?. Australian Journal of Agricultural Research56(11), 1159-1168. https://doi.org/10.1071/ar05069 
Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research112(2-3), 119-123. https://doi.org/10.1016/j.fcr.2009.03.009 
Dodig, D., Zoric, M., Knezevic, D., King, S. R., & Surlan-Momirovic, G. (2008). Genotype× environment interaction for wheat yield in different drought stress conditions and agronomic traits suitable for selection. Australian Journal of Agricultural Research. 59, 536-545. https://doi.org/10.1071/ar07281 
Elhaik, E. (2022). Principal component analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 12(1), 14683. https://doi.org/10.1038/s41598-022-14395-4 
Elsayed, M. L., Elkot, A. F., Noreldin, T., Richard, B., Qi, A., Shabana, Y. M., Saleh, S. M., Fitt, B. D., & Kheir, A. M. (2025). Optimizing wheat yield and water productivity under water scarcity: A modeling approach for irrigation and cultivar selection across different agro-climatic zones of Egypt. Agricultural Water Management, 317, 109668. https://doi.org/10.1016/j.agwat.2025.109668 
Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153-188. https://doi.org/10.1007/978-90-481-2666-8_12 
Georgii, E., Jin, M., Zhao, J., Kanawati, B., Schmitt-Kopplin, P., Albert, A., Winkler, J. B., & Schäffner, A. R. (2017). Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biology, 17(1), 120. https://doi.org/10.1186/s12870-017-1062-y 
González-Espíndola, L. Á., Pedroza-Sandoval, A., Trejo-Calzada, R., Jacobo-Salcedo, M. D. R., García de los Santos, G., & Quezada-Rivera, J. J. (2024). Relative water content, chlorophyll index, and photosynthetic pigments on Lotus corniculatus L. in response to water deficit. Plants, 13(7), 961. https://doi.org/10.3390/plants13070961 
Kettani, R., Ferrahi, M., Nabloussi, A., Ziri, R., & Brhadda, N. (2023). Water stress effect on durum wheat (Triticum durum Desf.) advanced lines at flowering stage under controlled conditions. Journal of Agriculture and Food Research, 14, 100696. https://doi.org/10.1016/j.jafr.2023.100696 
Khalid, A., Hameed, A., & Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition10, 1053196. https://doi.org/10.3389/fnut.2023.1053196 
Khalid, S. (2020). Agronomy-food security-climate change and the sustainable development goals. In Agronomy-Climate Change & Food Security. IntechOpen. https://doi.org/10.3389/fnut.2023.1053196 
Khan, A. A., Wang, Y. F., Akbar, R., & Alhoqail, W. A. (2025). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science16, 1547452. https://doi.org/10.3389/fpls.2025.1547452 
Kim, S., Kang, D., Huo, Z., Park, Y., & Tseng, G. C. (2018). Meta-analytic principal component analysis in integrative omics application. Bioinformatics34(8), 1321-1328. https://doi.org/10.1093/bioinformatics/btx765 
Li, M., Liu, Y., Ma, J., Zhang, P., Wang, C., Su, J., & Yang, D. (2020). Genetic dissection of stem WSC accumulation and remobilization in wheat (Triticum aestivum L.) under terminal drought stress. BMC Genetics, 21(1), 50. https://doi.org/10.1186/s12863-020-00855-1 
Liu, X., Sun, T., Zhou, Z., Tong, Y., Zhou, Z., Cao, H., Qu, J., Li, Z., Yang, Q., Xu, M., & Zhang, B. (2025). Quantitative trait locus mapping for salt and drought tolerance traits in wheat (Triticum aestivum L.). BMC Plant Biology, 25(1), 787.
Lopes, M. S., Reynolds, M. P., Manes, Y., Singh, R. P., Crossa, J., & Braun, H. J. (2012). Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Science, 52(3), 1123-1131. https://doi.org/10.2135/cropsci2011.09.0467 
McIntyre, C.L., Mathews, K. L., Rattey, A., Chapman, S.C., Drenth, J., Ghaderi, M., Reynolds, M., & Shorter, R. (2010). Molecular detection of genomic regions associated with grain yield and yield components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theoretical and Applied Genetics, 120, 527–541. https://doi.org/10.1007/s00122-009-1173-4 
Mohi-Ud-Din, M., Hossain, M. A., Rohman, M. M., Uddin, M. N., Haque, M. S., Tahery, M. H., & Hasanuzzaman, M. (2024). Multi-trait index-based selection of drought tolerant wheat: Physiological and biochemical profiling. Plants, 14(1), 35. https://doi.org/10.3390/plants14010035 
Olivares-Villegas, J. J., Reynolds, M. P., & McDonald, G. K. (2007). Drought-adaptive attributes in the SeriM82/Babax hexaploid wheat population. Functional Plant Biology, 34, 189–203. https://doi.org/10.3390/plants14010035 
Pantha, S., Kilian, B., Özkan, H., Zeibig, F., & Frei, M. (2024). Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the Triticum genus. Environmental and Experimental Botany, 228, 106047. https://doi.org/10.1016/j.envexpbot.2024.106047 
Pereyra, M. S., Argüello, J. A., & Bima, P. I. (2021). Genotype-dependent architectural and physiological responses regulate the strategies of two oregano cultivars to water excess and deficiency regimes. Industrial Crops and Products, 161, 113206. https://doi.org/10.1016/j.envexpbot.2024.106047 
Pinto, R. S., Reynolds, M. P., Mathews, K. L., McIntyre, C. L., Olivares-Villegas, J. J., & Chapman, S. C. (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, 121, 1001–1021. https://doi.org/10.1007/s00122-010-1351-4. PMID: 20523964. https://doi.org/10.1007/s00122-010-1351-4 
Richards, R. A., Rebetzke, G. J., Watt, M., Condon, A. T., Spielmeyer, W., & Dolferus, R. (2010). Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology37(2), 85-97. https://doi.org/10.1071/fp09219 
Sareen, S., Budhlakoti, N., Mishra, K. K., Bharad, S., Potdukhe, N. R., Tyagi, B. S., & Singh, G. P. (2023). Resilience to terminal drought, heat, and their combination stress in wheat genotypes. Agronomy, 13(3), 891. https://doi.org/10.3390/agronomy13030891 
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259 
Senapati, N., Stratonovitch, P., Paul, M. J., & Semenov, M. A. (2019). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549-2560. https://doi.org/10.3390/plants10020259 
Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215-225. https://doi.org/10.1016/j.crvi.2008.01.002 
Sharma, V., Mahadevaiah, S.S., Latha, P., Gowda, S.A., Manohar, S.S., Jadhav, K., Bajaj, P., Joshi, P., Anitha, T., Jadhav, M. P., & Sharma, S. (2024). Dissecting genomic regions and underlying candidate genes in groundnut MAGIC population for drought tolerance. BMC Plant Biology24(1), 1044. https://doi.org/10.1186/s12870-024-05749-3 
Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63(1), 25-31. https://doi.org/10.1093/jxb/err269 
Tardieu, F., Simonneau, T., & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733-759. https://doi.org/10.3410/f.732869508.793559917 
Vieira, R. A., Nogueira, A. P. O., & Fritsche-Neto, R. (2025). Optimizing the selection of quantitative traits in plant breeding using simulation. Frontiers in Plant Science, 16, 1495662. https://doi.org/10.3389/fpls.2025.1495662 
Xu, Z., Lai, X., Ren, Y., Yang, H., Wang, H., Wang, C., Xia, J., Wang, Z., Yang, Z., Geng, H., & Shi, X. (2023). Impact of drought stress on yield-related agronomic traits of different genotypes in spring wheat. Agronomy, 13(12), 2968. https://doi.org/10.3390/agronomy13122968 
Zadoks, J.C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x https://doi.org/10.1016/b978-0-08-034201-6.50026-0 
Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., Lu, X., Zhang, M., & Jin, J. (2018). Effect of drought on agronomic traits of rice and wheat: A meta-analysis. International Journal of Environmental Research and Public Health, 15(5), 839. https://doi.org/10.3390/ijerph15050839