Effects of Oliveria decumbens and Ferula assa-foetida essential oils and their nanoemulsions on Mediterranean flour moth (Ephestia kuehniella)

Document Type : Research Paper

Authors

1 Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 Department of Horticultural Sciences, School of Agriculture, Shiraz University, Shiraz, Iran.

Abstract

In this study, effects of essential oils and their nanoemulsions extracted from Oliveria decumbens flowers and Ferula assa-foetida oleo-gum-resin were evaluated on late-instar larvae of the Mediterranean flour moth (Ephestia kuehniella). The selected concentrations of the essential oils and their nanoemulsions were as follows: O. decumbens essential oils (250, 300, 370, 410, and 490 µL/L), F. assafoetida essential oils (100, 120, 150, 210, and 270 µL/L), O. decumbens essential oil nanoemulsion (170, 230, 300, 350, and 410 µL/L), and F. assa-foetida essential oil nanoemulsion (30, 60, 90, 110, and 130 µL/L). The results showed that the nanoemulsion of F. assa-foetida essential oil was more effective than that of O. decumbens, with a 50% lethal dose (LD50) of 79.249 µL/L being more effective than a 50% lethal dose (LD50) of 284.991 µL/L. In addition, the toxicity levels of F. assa-foetida were considerably higher than those of O. decumbens in both its nanoemulsion and essential oil forms, with lethal dose ratios recorded at 0.278 and 0.456, respectively. These findings suggest that essential oils could serve as an alternative to synthetic pesticides for controlling Mediterranean flour moths.

Graphical Abstract

Effects of Oliveria decumbens and Ferula assa-foetida essential oils and their nanoemulsions on Mediterranean flour moth (Ephestia kuehniella)

Keywords

Main Subjects


Article Title [Persian]

اثر اسانس و نانو امولسیون اسانس Oliveria decumbens و Ferula assa-foetida روی شب پره مدیترانه ای آرد، Ephestia kuehniella

Authors [Persian]

  • فائزه باقری 1
  • محمد رمضانی 1
1 بخش گیاهپزشکی، دانشکده کشاورزی دانشگاه شیراز، شیراز، ج. ا. ایران
2
Abstract [Persian]

در این مطالعه، اثرات اسانس‌ و نانوامولسیون‌ اسانس های استخراج‌شده از گلهای گیاه لعل کوهستان (Oliveria decumbens ) واولئوگام رزین آنغوزه( Ferula assa-foetida ) بر روی لاروهای سن اواخر پروانه آرد مدیترانه‌ای (Ephestia kuehniella) مورد بررسی قرار گرفت. غلظت‌های انتخابی اسانس‌ها و نانوامولسیون‌های آن‌ها عبارت بودند از: اسانس لعل کوهستان (250، 300، 370، 410 و 490 میکرولیتر بر لیتر)، اسانس آنغوزه (100، 120، 150، 210، و 270 میکرولیتر بر لیتر)، نانوامولسیون اسانس لعل کوهستان (170، 230، 300، 350 و 410 میکرولیتر بر لیتر)، و نانوامولسیون اسانس آنغوزه (30، 60، 90، 110، و 130 میکرولیتر بر لیتر). نتایج نشان داد که نانوامولسیون اسانس آنغوزه با دوز کشندگی 50 درصد (LD50) معادل 79.249 میکرولیتر بر لیتر موثرتر از اسانس لعل کوهستان با دوز کشندگی 50 درصد (LD50) معادل 284.991 میکرولیتر بر لیتر بود. علاوه بر این، میزان سمیت اسانس و نانوامولسیون آنغوزه به‌طور قابل توجهی بیشتر از اسانس و نانوامولسیون لعل کوهستان بود، به‌طوری که نسبت دوزهای کشنده به‌ترتیب 0.278 و 0/456 ثبت شد.همچنین مقایسه چهار ترکیب مورد استفاده، تفاوت معنی داری را بین نانوامولسیون اسانس و اسانس نشان داد. این یافته ها نشان می دهد که اسانس ها می توانند جایگزینی برای آفت کش های سنتزی برای کنترل آفات پروانه آرد مدیترانه ای باشند.

Keywords [Persian]

  • دز کشنده 50%
  • تجزیه پروبیت
  • مرگ و میر
  • آفت کش ها
Abbott, W. S. (1925). Method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267.
Abdalla, M. A. & Mühling, K. H. (2019). Plant-derived sulfur containing natural products produced as a response to biotic and abiotic stresses: A review of their structural diversity and medicinal importance. Journal of Applied Botany and Food Quality, 92, 204 - 215. https://doi.org/10.5073/JABFQ.2019.092.029
Abduz Zahir, A., Bagavan, A., Kamaraj, C., Elangi, G., & Abdul Rahuman, A. (2012). Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. Journal of Biopesticides, 52(2), 95-102.
Anjali, C., Sharma, Y., Mukherjee, A., & Chandrasekaran, N. (2012). Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Management Science, 68(2), 158-163. https://doi.org/10.1002/ps.2233
Aouadi, G., Haouel, S., Soltani, A., Ben Abada, M., Boushih, E., Elkahoui, S., Taibi, F., Mediouni Ben Jemâa, J., & Bennadja, S. (2020). Screening for insecticidal efficacy of two Algerian essential oils with special concern to their impact on biological parameters of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection, 127(4), 471–482. https://doi.org/10.1007/s41348-020-00340-y
Aslan, İ., Özbek, H., Çalmaşur, Ö., & Şahi̇n, F. (2004). Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Industrial Crops and Products, 19(2), 167-173. https://doi.org/10.1016/j.indcrop.2003.09.003
Bamoniri, A., Gholami, M., Moradi, S., & Shakeri, A. (2019). Chemical composition and insecticidal activity of essential oils rich in sulfur compounds. Journal of Applied Botany and Food Quality, 92, 182–187. https://doi.org/10.5073/JABFQ.2019.092.029
Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S. C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84(1), 99-105. https://doi.org/10.1007/s10340-010-0332-3
Ghosh, V., Mukherjee, A., & Chandrasekaran, N. (2013). Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti. Asian Journal of Chemistry, 25(Supplementary Issue), S321-S323.
Werdin González, J., Yeguerman, C., Marcovecchio, D., Delrieux, C., Ferrero, A., & Fernández Band, B. (2016). Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the German cockroach. Ecotoxicology and Environmental Safety, 130, 11–18. https://doi.org/10.1016/j.ecoenv.2016.03.045Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach. Ecotoxicology and Environmental Safety, 130, 11-18. https://doi.org/10.1016/j.ecoenv.2016.03.045
Goswami, A., Roy, I., Sengupta, S., & Debnath, N. (2010). Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films, 519(3), 1252-1257. https://doi.org/10.1016/j.tsf.2010.08.079
Haghshenas, G., Raouf Fard, F., Golmakani, M. T., Saharkhiz, M. J., Esmaeili, H., Khosravi, A. R., & Sedaghat, S. (2023). Yield, chemical composition, and antioxidant activity of essential oil obtained from Ferula persica oleo-gum-resin: Effect of the originated region, type of oleo-gum-resin, and extraction method. Journal of Applied Research on Medicinal and Aromatic Plants, 35, 100471. https://doi.org/10.1016/j.jarmap.2023.100471
Hashem, A. S., Awadalla, S. S., Zayed, G. M., Maggi, F., & Benelli, G. (2018). Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—insecticidal activity and mode of action. Environmental Science and Pollution Research, 25(19), 18802-18812. https://doi.org/10.1007/s11356-018-2068-1
Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. https://doi.org/10.1016/j.ecoenv.2017.04.041
Heydarzade, A., Moravej, G., Hatefi, S., & Shabahang, J. (2011). Fumigant toxicity of essential oils extracted from three medicinal plants against Callosobruchus maculatus adults (Coleoptera: Bruchidae). Iranian Journal of Plant Protection Science, 42(2), 275-284. https://doi.org/10.22059/IJPPS.2012.24335
Ikawati, S., Himawan, T., Abadi, A. L., & Tarno, H. (2021). Toxicity nanoinsecticide based on clove essential oil against Tribolium castaneum (Herbst). Journal of Pesticide Science, 46(2), 222-228. https://doi.org/10.1584/jpestics.D20-059
Isman, M. B. (2020). Botanical insecticides in the twenty-First Century—Fulfilling Their Promise? Annual Review of Entomology, 65(1), 233-249. https://doi.org/10.1146/annurev-ento-011019-025010
Karalius, V., & Bûda, V. (1995). Mating delay effect on moths’ reproduction: correlation between reproduction success and calling activity in females Ephestia kuehniella, Cydia pomonella, Yponomeuta cognagellus (Lepidoptera: Pyralidae, Tortricidae, Yponomeutidae). Pheromones, 5(2), 169-190.
Lima Filho, M., Favero, S., & Lima, J. O. G. de. (2001). Produção de Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae) com a utilização de fubá de milho na dieta artificial. Neotropical Entomology, 30(1), 37-42. https://doi.org/10.1590/S1519-566X2001000100007
López, M. D., & Pascual-Villalobos, M. J. (2010). Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, 31(2), 284-288. https://doi.org/10.1016/j.indcrop.2009.11.005
Margulis-Goshen, K., & Magdassi, S. (2013). Nanotechnology: An advanced approach to the development of potent insecticides. In Advanced Technologies for Managing Insect Pests (pp. 295–314). Netherlands: Springer. https://doi.org/10.1007/978-94-007-4497-4_15
Menossi, M., Ollier, R. P., Casalongué, C. A., & Alvarez, V. A. (2021). Essential oil‐loaded bio‐nanomaterials for sustainable agricultural applications. Journal of Chemical Technology & Biotechnology, 96(8), 2109-2122. https://doi.org/10.1002/jctb.6705
Nenaah, G. E. (2014). Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst). Industrial Crops and Products, 53, 252-260. https://doi.org/10.1016/j.indcrop.2013.12.042
Peixoto, M. G., Bacci, L., Fitzgerald Blank, A., Araújo, A. P. A., Alves, P. B., Silva, J. H. S., Santos, A. A., Oliveira, A. P., da Costa, A. S., & Arrigoni-Blank, M. de F. (2015). Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Industrial Crops and Products, 71, 31-36. https://doi.org/10.1016/j.indcrop.2015.03.084
Regnault-Roger, C. (2013). Essential oils in insect control. In Natural products (pp. 4087-4107). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-642-22144-6_181
Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2007). Bioassays with arthropods (2nd ed.). Boca Raton, FL: CRC Press.
Sabbour, M. M., & Abd El-Aziz, S. E.-S. (2019). Impact of certain nano oils against Ephestia kuehniella and Ephestia cutella (Lepidoptera-Pyralidae) under laboratory and store conditions. Bulletin of the National Research Centre, 43(1), 80. https://doi.org/10.1186/s42269-019-0129-3
Safa, M., Yazdanian, M., & Sarailoo, M. H. (2014). Larval feeding from some artificial diets and its effects on biological parameters of the Mediterranean flour moth. Munis Entomology and Zoology, 9(2), 678-686. http://www.munisentzool.org
Sereshti, H., Izadmanesh, Y., & Samadi, S. (2011). Optimized ultrasonic assisted extraction–dispersive liquid–liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. Journal of Chromatography A, 1218(29), 4593-4598. https://doi.org/10.1016/j.chroma.2011.05.037
Sfara, V., Zerba, E. N., & Alzogaray, R. A. (2009). Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of rhodnius prolixus. Journal of Medical Entomology, 46(3), 511-515. https://doi.org/10.1603/033.046.0315
Tapondjou, A. L., Adler, C., Fontem, D. A., Bouda, H., & Reichmuth, C. (2005). Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. Journal of Stored Products Research, 41(1), 91-102. https://doi.org/10.1016/j.jspr.2004.01.004
Upadhyay, R. K., & Ahmad, S. (2011). Management strategies for control of stored grain insect pests in farmer stores and public ware houses. World Journal of Agricultural Sciences, 7(5), 527-549.
Veal, L. (1996). The potential effectiveness of essential oils as a treatment for headlice, Pediculus humanus capitis. Complementary Therapies in Nursing and Midwifery, 2(4), 97-101. https://doi.org/10.1016/S1353-6117(96)80083-7
Werdin González, J. O., Stefanazzi, N., Murray, A. P., Ferrero, A. A., & Fernández Band, B. (2015). Novel nanoinsecticides based on essential oils to control the German cockroach. Journal of Pest Science, 88(2), 393-404. https://doi.org/10.1007/s10340-014-0607-1
Zallaghi, N., & Ahmadi, M. (2021). Combined action of Lavandula angustifolia Miller essential oil and gamma irradiation treatment on some biological aspects of the Mediterranean flour moth Ephestia kuehniella (Zeller). International Journal of Pest Management, 67(3), 203-215. https://doi.org/10.1080/09670874.2020.1723819