The effects of blue-green algae Nostoc commune aqueous extract on the growth parameters, metabolite contents, and antioxidant capacity in seedlings of a local Iraqi rice (Amber) variety

Document Type : Research Paper

Authors

Department of Plant Sciences, Faculty of Science, University of Mazandaran, Babolsar, I. R. Iran

10.22099/iar.2025.51996.1659

Abstract

Blue-green algae have significant potential for enhancing the productivity of various agricultural crops. In this study, the effects of Nostoc commune extract on the physiological parameters of a local rice variety were evaluated. The extract was prepared at a concentration of 0.5 g per 100 mL of distilled water, and rice seeds were treated with extract dilutions of 0%, 20%, 40%, 60%, 80%, and 100%. Different concentrations of N. commune extract produced varied physiological responses in rice. All extract concentrations significantly increased radicle length and seedling weight. Germination percentage was significantly improved by 20% and 60% treatments, while the 40% concentration notably enhanced hypocotyl length. In terms of biochemical parameters, all concentrations significantly increased metabolite content. Most concentrations also led to a significant rise in chlorophyll levels, and carotenoid content was the highest in 100% extract treatment. The 60% concentration resulted in the highest carbohydrate and protein levels. The greatest accumulation of phenols and flavonoids was observed with the 20% extract. Additionally, antioxidant capacity was significantly enhanced by the 20% and 40% concentrations. Overall, based on improvements observed in both growth and biochemical parameters, aqueous extract of N. commune at concentrations below 60% can be recommended as an effective biostimulant and biofertilizer for enhancing rice yield.

Graphical Abstract

The effects of blue-green algae Nostoc commune aqueous extract on the growth parameters, metabolite contents, and antioxidant capacity in seedlings of a local Iraqi rice (Amber) variety

Keywords

Main Subjects


Article Title [Persian]

اثرات عصاره آبی جلبک سبز-آبی Nostoc commune بر پارامترهای رشد، محتوای متابولیت‌ها و ظرفیت آنتی‌اکسیدانی در گیاهچه های برنج محلی عراقی (Amber)

Authors [Persian]

  • شایما مؤمن سعید
  • احسان نظیفی
  • عارف شیخ امیری
گروه علوم گیاهی، دانشکده علوم، دانشگاه مازندران، بابلسر، ج. ا. ایران
Abstract [Persian]

جلبک‌های سبز-آبی پتانسیل منحصر به فردی برای افزایش بهره‌وری انواع محصولات کشاورزی دارند. از این رو، اثر عصاره N. commune بر پارامترهای فیزیولوژیکی یک برنج محلی بررسی شد. عصاره در غلظت 0/5 گرم در 100 میلی‌لیتر آب مقطر تهیه شد و بذر‌ها با رقت‌های 0، 20، 40، 60، 80 و 100 درصد عصاره تیمار شدند. غلظت‌های مختلف عصاره N. commune پاسخ‌های متفاوتی را در فیزیولوژی برنج برانگیخت. از نظر پارامترهای رشد، تمامی غلظت‌های عصاره تأثیر مثبت معنی‌داری بر افزایش طول ریشه‌چه و وزن گیاهچه داشتند. غلظت‌های 20 و 60 درصد عصاره تأثیر مثبت معنی‌داری بر افزایش درصد جوانه‌زنی و غلظت 40 درصد عصاره تأثیر مثبت معنی‌داری بر افزایش طول ساقه‌چه داشتند. از نظر پارامترهای بیوشیمیایی، غلظت‌های مختلف عصاره تأثیر مثبت معنی‌داری بر افزایش محتوای متابولیت‌ها داشت. اکثر غلظت‌های عصاره تأثیر مثبت معنی‌داری بر افزایش محتوای کلروفیل داشتند و میزان کاروتنوئیدها در تیمار با غلظت 100 درصد عصاره افزایش یافت. تیمار با غلظت 60 درصد عصاره بیشترین میزان کربوهیدرات و پروتئین را نشان داد. همچنین بیشترین میزان فنل و فلاونوئید در تیمار با غلظت 20 درصد عصاره مشاهده شد. همچنین غلظت‌های 20 و 40 درصد عصاره تأثیر مثبت معنی‌داری بر افزایش ظرفیت آنتی‌اکسیدانی داشتند. با توجه به بهبود پارامترهای رشد و بیوشیمیایی نهال‌های برنج، به نظر می‌رسد که عصاره آبی N. commune در غلظت‌های کمتر از 60 درصد می‌تواند به عنوان یک محرک زیستی و کود زیستی مناسب برای افزایش عملکرد برنج پیشنهاد شود.

Keywords [Persian]

  • سیانوباکتری
  • کود زیستی
  • محرک زیستی
  • گیاهچه
  • Oryza sativa
Abo-Shady, A. M., Al-Ghaffar, B. A., Rahhal, M., & Abd-El Monem, H. (2007). Biological control of faba bean pathogenic fungi by three cyanobacterial filtrates. Pakistan Journal of Biological Sciences, 10(18), 3029-3038. https://doi.org/10.3923/pjbs.2007.3029.3038
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102
Akgül, F. (2019). Effect of Spirulina platensis (Gomont) geitler extract on seed germination of wheat and barley. Alinteri Journal of Agriculture Science, 34(2), 148-153. https://doi.org/10.28955/alinterizbd.639000
Akkol, E. K., Göger, F., Koşar, M., & Başer, K. H. C. (2008). Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry, 108(3), 942-949. https://doi.org/10.1016/j.foodchem.2007.11.071
Allen, D. J., & Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6(1), 36-42. https://doi.org/10.1016/S1360-1385(00)01808-2
Alscher, R. G., & Hess, J. L. (1993). Antioxidants in higher plants. Boca Raton: CRC Press. https://doi.org/10.1201/9781315149899
Al-Sherif, E. A., Abd El-Hameed, M. S., Mahmoud, M. A., & Ahmed, H. S. (2015). Use of cyanobacteria and organic fertilizer mixture as soil bioremediation. American-Eurasian Journal of Agricultural and Environmental Sciences, 15(5), 794-799. https://doi.org/10.5829/idosi.aejaes.2015.15.5.93245
Aminifard, M. H., & Khandan, S. (2019). The effect of different levels of seaweed extract on the growth, yield and biochemical characteristics of bitter squash (Momordica charantia L.). Journal of Plant Environmental Physiology, 13(52), 56-66. (In Persian) https://dorl.net/dor/20.1001.1.76712423.1397.13.52.5.4
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
Behboudi, F., Allahdadi, E., & Mohamadi, G. E. (2013). The effect of vermicompost containing copper oxide (CuO) and zinc oxide (ZnO) nanoparticles on some characteristics of the wax bean. Journal of Crop Production, 6(3), 33-49. (In Persian)
https://dor.isc.ac/dor/20.1001.1.2008739.1392.6.3.3.3
Bhandari, G. (2014). An overview of agrochemicals and their effects on environment in Nepal. Applied Ecology and Environmental Sciences, 2(2), 66-73. https://doi.org/10.12691/aees-2-2-5
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
Blunden, G., & Wildgoose, P. B. (1977). The effects of aqueous seaweed extract and kinetin on potato yields. Journal of the Science of Food and Agriculture, 28(2), 121-125. https://doi.org/10.1002/jsfa.2740280203
Blunden, G., Jenkins, T., & Liu, Y.-W. (1996). Enhanced leaf chlorophyll levels in plants treated with seaweed extract. Journal of Applied Phycology, 8, 535-543. https://doi.org/10.1007/BF02186333
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Castellanos-Barriga, L. G., Santacruz-Ruvalcaba, F., Hernández-Carmona, G., Ramírez-Briones, E., & Hernández-Herrera, R. M. (2017). Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology, 29, 2479-2488. https://doi.org/10.1007/s10811-017-1082-x
Chabili, A., Minaoui, F., Hakkoum, Z., Douma, M., Meddich, A., & Loudiki, M. (2024). A comprehensive review of microalgae and cyanobacteria-based biostimulants for agriculture uses. Plants, 13(2), 159. https://doi.org/10.3390/plants13020159
Chittapun, S., Limbipichai, S., Amnuaysin, N., Boonkerd, R., & Charoensook, M. (2018). Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: A pot experiment. Journal of Applied Phycology, 30, 79-85. https://doi.org/10.1007/s10811-017-1138-y
Chittora, D., Meena, M., Barupal, T., Swapnil, P., & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22, 100737. https://doi.org/10.1016/j.bbrep.2020.100737
Cho, M., Lee, H. S., Kang, I. J., Won, M. H., & You, S. (2011). Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chemistry, 127(3), 999-1006. https://doi.org/10.1016/j.foodchem.2011.01.072
Chojnacka, K., Saeid, A., Witkowska, Z., & Tuhy, L. (2012). Biologically active compounds in seaweed extracts-the prospects for the application. The Open Conference Proceedings Journal, 3(1), 20-28. http://dx.doi.org/10.2174/1876326X01203020020
Crouch, I. J., & Van Staden, J. (1993). Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation, 13, 21-29. https://doi.org/10.1007/BF00207588
Delcour, J. A., & Hoseney, R. C. (2010). Principles of cereal science and technology (3rd ed.). United States: AACC International.
Dewick, P. M. (2002). Medicinal natural products: a biosynthetic approach (2nd ed.). England: John Wiley & Sons.
Dodds, W. K., Gudder, D. A., & Mollenhauer, D. (1995). The ecology of Nostoc. Journal of Phycology, 31(1), 2-18. https://doi.org/10.1111/j.0022-3646.1995.00002.x
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Eckhardt, U., Grimm, B., & Hörtensteiner, S. (2004). Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology, 56, 1-14. https://doi.org/10.1007/s11103-004-2331-3
Erulan, V., Soundarapandian, P., Thirumaran, G., & Ananthan, G. (2009). Studies on the effect of Sargassum polycystum (C. Agardh, 1824) extract on the growth and biochemical composition of Cajanus cajan (L.) Mill sp. American-Eurasian Journal of Agricultural and Environmental Science, 6(4), 392-399.
Faheed, F. A., & El-Fattah, Z. A. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Sciences, 4(4), 165-169.
Fróna, D., Szenderák, J., & Harangi-Rákos, M. (2019). The challenge of feeding the world. Sustainability, 11(20), 5816. https://doi.org/10.3390/su11205816
Gao, K. (1998). Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. Journal of Applied Phycology, 10, 37-49. https://doi.org/10.1023/A:1008014424247
Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051-1061. https://doi.org/10.1007/s10811-015-0625-2
Górka, B., Korzeniowska, K., Lipok, J., & Wieczorek, P. P. (2018). The biomass of algae and algal extracts in agricultural production. Algae Biomass: Characteristics and Applications: Towards Algae-Based Products, 103-114. https://doi.org/10.1007/978-3-319-74703-3_9
Grzesik, M., Romanowska-Duda, Z., & Kalaji, H. M. (2017). Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica, 55, 510-521. https://doi.org/10.1007/s11099-017-0716-1
Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26, 619-628. https://doi.org/10.1007/s10811-013-0078-4
Hill, D. R., Peat, A., & Potts, M. (1994). Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (Cyanobacteria). Protoplasma, 182, 126-148. https://doi.org/10.1007/BF01403474
Hou, W., Chen, X., Song, G., Wang, Q., & Chang, C. C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45(1), 62-69. https://doi.org/10.1016/j.plaphy.2006.12.005
Johnson, H. E., King, S. R., Banack, S. A., Webster, C., Callanaupa, W. J., & Cox, P. A. (2008). Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. Journal of Ethnopharmacology, 118(1), 159-165. https://doi.org/10.1016/j.jep.2008.04.008
Kalaivanan, C., Chandrasekaran, M., & Venkatesalu, V. (2012). Effect of seaweed liquid extract of Caulerpa scalpelliformis on growth and biochemical constituents of black gram (Vigna mungo (L.) Hepper). Phykos, 42(2), 46-53.
Khalil, M. Y., Moustafa, A. A., & Naguib, N. Y. (2007). Growth, phenolic compounds and antioxidant activity of some medicinal plants grown under organic farming condition. World Journal of Agricultural Sciences, 3(4), 451-457.
Khandan Deh-Arbab, S., Aminifard, M. H., Fallahi, H. R., & Kaveh, H. (2020). Evaluating the effects of growth promoting fertilizer containing seaweed extract and mother corm weight on antioxidant activity and stigma quality of saffron. Plant Productions, 43(2), 213-226. https://doi.org/10.22055/ppd.2019.26492.1630
Kim, J. D. (2006). Screening of cyanobacteria (blue-green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology, 34(3), 138-142. https://doi.org/10.4489/MYCO.2006.34.3.138
Kriedemann, P. E. (1986). Stomatal and photosynthetic limitations to leaf growth. Functional Plant Biology, 13(1), 15-31. https://doi.org/10.1071/PP9860015
Layek, J., Das, A., Idapuganti, R. G., Sarkar, D., Ghosh, A., Zodape, S. T., & Ngachan, S. (2018). Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. Journal of Applied Phycology, 30, 547-558.
https://doi.org/10.1007/s10811-017-1225-0
Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S., & Yuanhua, D. (2014). Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific Reports, 4(1), 5859. https://doi.org/10.1038/srep05859
Liu, G., Wang, Q., & Liu, X. (2011). Promotive effect of Nostoc commune Vauch. water extract on seed germination of Gentiana dahurica Fischer. Grassland Science, 57(2), 116-118. https://doi.org/10.1111/j.1744-697X.2011.00217.x
Lola-Luz, T., Hennequart, F., & Gaffney, M. (2014). Effect on yield, total phenolic, total flavonoid and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae var italica) following the application of a commercial brown seaweed extract (Ascophyllum nodosum). Agricultural and Food Science, 23(1), 28-37. https://doi.org/10.23986/afsci.8832
Malam Issa, O., Défarge, C., Le Bissonnais, Y., Marin, B., Duval, O., Bruand, A., & Annerman, M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 290, 209-219. https://doi.org/10.1007/s11104-006-9153-9
Maqubela, M. P., Mnkeni, P. N. S., Issa, O. M., Pardo, M. T., & D’acqui, L. P. (2009). Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant and Soil, 315, 79-92. https://doi.org/10.1007/s11104-008-9734-x
Mazhar, S., Cohen, J. D., & Hasnain, S. (2013). Auxin producing non‐heterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. Journal of Basic Microbiology, 53(12), 996-1003.
https://doi.org/10.1002/jobm.201100563
Mazor, G., Kidron, G. J., Vonshak, A., & Abeliovich, A. (1996). The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 21(2), 121-130. https://doi.org/10.1111/j.1574-6941.1996.tb00339.x
Michalak, I., Górka, B., Wieczorek, P. P., Rój, E., Lipok, J., Łęska, B., & Dobrzyńska-Inger, A. (2016). Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology, 51(3), 243-252. https://doi.org/10.1080/09670262.2015.1134813
Mishra, D., Rajvir, S., Mishra, U., & Kumar, S. S. (2013). Role of bio-fertilizer in organic agriculture: A review. Research Journal of Recent Sciences, 2(ISC-2012), 39-41.
Mishra, U., & Pabbi, S. (2004). Cyanobacteria: A potential biofertilizer for rice. Resonance, 9, 6-10. https://doi.org/10.1007/BF02839213
Mutale-Joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., & Hicham, E. A. (2020). Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports, 10(1), 2820. https://doi.org/10.1038/s41598-020-59840-4
Nair, P., Kandasamy, S., Zhang, J., Ji, X., Kirby, C., Benkel, B., & Prithiviraj, B. (2012). Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics, 13, 1-23. https://doi.org/10.1186/1471-2164-13-643
Nawar, D. A., & Ibraheim, S. K. A. (2014). Effect of algae extract and nitrogen fertilizer rates on growth and productivity of peas. Middle East Journal of Agriculture Research, 3(4), 1232-1241.
Obana, S., Miyamoto, K., Morita, S., Ohmori, M., & Inubushi, K. (2007). Effect of Nostoc sp. on soil characteristics, plant growth and nutrient uptake. Journal of Applied Phycology, 19, 641-646. https://doi.org/10.1007/s10811-007-9193-4
Osman, M. E. H., El-Sheekh, M. M., El-Naggar, A. H., & Gheda, S. F. (2010). Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46, 861-875.
Pessarakli, M. (1999). Handbook of plant and crop stress (2nd ed.). New York: CRC Press.
Pise, N. M., & Sabale, A. B. (2010). Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L. Journal of Phytology, 2(4), 50-56.
Pison, G. (2022). World population: 8 billion today, how many tomorrows? Population & Societies, 604(9), 1-4. https://doi.org/10.3917/popsoc.604.0001
Plaza, B. M., Gómez-Serrano, C., Acién-Fernández, F. G., & Jimenez-Becker, S. (2018). Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia xhybrida growth. Journal of Applied Phycology, 30, 2359-2365. https://doi.org/10.1007/s10811-018-1427-0
Puglisi, I., Barone, V., Fragalà, F., Stevanato, P., Baglieri, A., & Vitale, A. (2020a). Effect of microalgal extracts from Chlorella vulgaris and Scenedesmus quadricauda on germination of Beta vulgaris seeds. Plants, 9(6), 675. https://doi.org/10.3390/plants9060675
Puglisi, I., La Bella, E., Rovetto, E. I., Lo Piero, A. R., & Baglieri, A. (2020b). Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants, 9(1), 123. https://doi.org/10.3390/plants9010123
Rodríguez, A., Stella, A., Storni, M., Zulpa, G., & Zaccaro, M. (2006). Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems, 2, 1-4. https://doi.org/10.1186/1746-1448-2-7
Saadatnia, H., & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant, Soil and Environment, 55(5), 207-212. https://doi.org/ 10.17221/384-PSE.
Saedi, F., Barzegar, T., Nikbakht, J., & Ghahremani, Z. (2022). Investigation the effect of two red seaweed species on growth, physiological indices and fruit yield of Ecballium elaterium under the influence of extraction method. Journal of Plant Production, 29(3), 69-88. https://doi.org/ 10.22069/JOPP.2022.19335.2852
Sengar, R. S., Gautam, M., Sengar, R. S., Sengar, R. S., Garg, S. K., Sengar, K., & Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 73-93. https://doi.org/10.1007/978-0-387-78444-1_3
Shanan, N. T., & Higazy, A. M. (2009). Integrated biofertilization management and cyanobacteria application to improve growth and flower quality of Matthiola incana. Research Journal of Agriculture and Biological Sciences, 5(6), 1162-1168.
Shariatmadari, Z., Riahi, H., Abdi, M., Hashtroudi, M. S., & Ghassempour, A. R. (2015). Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. Journal of Applied Phycology, 27, 2279-2287. https://doi.org/10.1007/s10811-014-0512-2
Shariatmadari, Z., Riahi, H., Seyed Hashtroudi, M., Ghassempour, A., & Aghashariatmadary, Z. (2013). Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Science and Plant Nutrition, 59(4), 535-547. https://doi.org/10.1080/00380768.2013.782253
Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology, 97(14), 1745-1751. https://doi.org/10.1016/j.biortech.2005.06.016
Sridhar, S., & Rengasamy, R. (2011). Effect of seaweed liquid fertilizer on growth, pigment concentration and yield of Amaranthus rosburghinus and Amaranthus tricolor under field trial. International Journal of Current Research, 3, 131-134.
Sunarpi, S., Jupri, A., Kurnianingsih, R., Julisaniah, N. I., & Nikmatullah, A. (2011). Effect of seaweed extracts on growth and yield of rice plants. Asian Journal of Tropical Biotechnology, 8(1), 73-77.
Thirumaran, G., Arumugam, M., Arumugam, R., & Anantharaman, P. (2009). Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (l) medikus. American-Eurasian Journal of Agronomy, 2(2), 57-66.
Vikram, B., & Sikarwar, P. S. (2024). Cyanobacterium: Uses as a biocontrol agent, biofertilizer, and plant growth promoter in agriculture and environmental sustainability. In: Gupta, A., Jain, S. and Verma, N. (Eds.), Industrial applications of soil microbes (pp. 171-182). Bentham Science Publishers. https://doi.org/10.2174/97898150797531240301
Whitton, B. A., & Potts, M. (2012). Introduction to the cyanobacteria. In: Whitton, B. (Ed.), Ecology of cyanobacteria II: their diversity in space and time (pp. 1-13). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-3855-3_1
Wilson, L. (2006). Cyanobacteria: A potential nitrogen source in rice fields. Texas Rice, 6, 9-10.
Zahra, Z., Choo, D. H., Lee, H., & Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments, 7(2), 13. https://doi.org/10.3390/environments7020013
Zhang, X., & Ervin, E. (2004). Cytokinin‐containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science, 44(5), 1737-1745. https://doi.org/10.2135/cropsci2004.1737
Zhang, X., & Ervin, E. (2008). Impact of seaweed extract‐based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Science, 48(1), 364-370. https://doi.org/10.2135/cropsci2007.05.0262