Effective factors on flood occurrence using the system dynamics approach (Case study: Eskandari watershed-Isfahan, Iran)

Document Type : Research Paper

Authors

1 Faculty of Natural Resources, Yazd UniversityDepartment of Natural Resources, Yazd University, Yazd, I. R. Iran

2 Faculty of Natural ReDepartment of Natural Resources, Yazd University, Yazd, I. R. Iransources, Yazd University

3 Geography Department, Faculty of Arts, University of British Columbia, Vancouver, Canada

4 Department of Soil Science, College of Agriculture, Shiraz University, I. R. Iran

Abstract

This study investigates the key factors influencing flood behavior through system dynamics modeling. Initially, the HEC-HMS model was employed to estimate flood levels across sub-basins due to its well-established capacity to simulate hydrological processes and quantify runoff within watershed areas. Its ability to integrate critical parameters, such as land cover and soil permeability, which influence the curve number (CN) and its relationship with runoff and slope, makes HEC-HMS particularly suitable for flood risk assessment. After identifying these relationships, system dynamics modeling was conducted using Vensim to simulate flood dynamics. Vensim’s capability to model complex systems, especially feedback loops and nonlinear interactions among multiple variables, enabled a comprehensive representation of the interdependencies among flood-related factors. Sensitivity analysis highlighted land cover as the most significant variable affecting flood behavior. To evaluate its impact, two rainfall scenarios were analyzed: a 26.75 mm event on January 3, 2011, affecting 30% of the watershed, and an 18 mm event on February 20, 2011, covering 20% of the area. The analysis revealed that precipitation, land cover, watershed size, slope, and soil permeability were the primary drivers of flooding. This study demonstrates the value of combining HEC-HMS and system dynamics modeling to predict floods, particularly in data-scarce watersheds. The integration of these tools facilitates the formulation of mathematical relationships among key hydrological variables, thereby enhancing our understanding and management of flood risks.

Keywords

Main Subjects


Article Title [Persian]

عوامل موثر بر وقوع سیل با رویکرد دینامیک سیستم (مطالعه موردی: حوزه آبخیز اسکندری- اصفهان، ایران)

Authors [Persian]

  • علی طالبی 1
  • زهرا اسلامی 2
  • یحیی زارع مهرجردی 3
  • زینب کریمی 4
1 گروه منایع طبیعی، دانشگاه یزد، یزد، ج. ا. ایران
2 گروه منایع طبیعی، دانشگاه یزد، یزد، ج. ا. ایران
3 گروه جغرافیا، دانشکده هنر، دانشگاه بریتیش کلمبیا، ونکوور، کانادا
4 گروه علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

این مطالعه عوامل کلیدی تأثیرگذار بر سیلاب‌ها را با استفاده از مدل‌سازی پویایی سیستم بررسی می‌کند. ابتدا مدل HEC-HMS برای محاسبه سطح سیلاب در زیرحوضه‌ها به کار گرفته شد، زیرا این مدل به دلیل توانایی شبیه‌سازی فرآیندهای هیدرولوژیکی و برآورد رواناب در حوضه‌های آبخیز، به طور گسترده‌ای مورد استفاده قرار می‌گیرد. قابلیت این مدل در لحاظ کردن پارامترهای مختلف مانند پوشش زمین و نفوذپذیری خاک که برای درک عدد منحنی (CN) و ارتباط آن با رواناب و شیب ضروری هستند، آن را به گزینه‌ای مناسب برای ارزیابی ریسک سیلاب تبدیل کرد. پس از شناسایی این روابط، مدل‌سازی پویایی سیستم در نرم‌افزار Vensim برای شبیه‌سازی فرآیند سیلاب استفاده شد. انعطاف‌پذیری Vensim در مدل‌سازی سیستم‌های پیچیده، مانند حلقه‌های بازخورد و تعاملات غیرخطی بین متغیرهای متعدد، امکان ارائه نمای دقیقی از پویایی بین عوامل مؤثر بر سیلاب را فراهم کرد. تحلیل حساسیت نشان داد که پوشش زمین بیشترین تأثیر را بر وقوع سیلاب دارد. برای ارزیابی این اثرات، دو سناریو آزمایش شد: یکی بر اساس رویداد بارشی ۳ ژانویه ۲۰۱۱ (۲۶.۷۵ میلی‌متر که ۳۰٪ از حوضه را تحت تأثیر قرار داد) و دیگری با استفاده از رویداد بارشی ۲۰ فوریه ۲۰۱۱ (۱۸ میلی‌متر که ۲۰٪ از منطقه را پوشش داد).نتایج، بارندگی، پوشش زمین، وسعت حوضه، شیب و نفوذپذیری خاک را به عنوان مهم‌ترین عوامل تأثیرگذار بر سیلاب شناسایی کرد. این مطالعه با استفاده از مدل‌سازی پویایی سیستم برای ایجاد روابط ریاضی بین این عناصر، ابزاری ارزشمند برای پیش‌بینی سیلاب در حوضه‌های کم‌داده ارائه می‌دهد.

Keywords [Persian]

  • حوضه اسکندری
  • دینامیک سیستم
  • رواناب
  • سیلاب
  • نرم افزار ونسیم
Abbasi, Sh., & Talebi, A. (2016). Prioritization of flood-prone sub-basins in the Bid Akhvid watershed, Yazd. First Conference on Hydrology of Semi-Arid Regions, Sanandaj, Iran.
Ali, M., Jamal Khan, S., Aslam, L., & Khan, Z. (2011). Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landscape Urban Plann, 102(4), 271-279. https://doi.org/10.1016/j.landurbplan.2011.05.006
Anderson, M. L., Chen, Z. Q., Kawas, M. L., & Feldman, A. (2002). Coupling HEC-HMS with atmospheric models for prediction of watershed runoff. Journal of Hydrologic Engineering. 7(4), 312-318. https://doi/10.1061/(ASCE)1084-0699(2002)7:4(312).
Awah, L. S., Belle, J. A., Nyam, Y. S., & Orimoloye, I. R. (2024). A participatory systems dynamic modelling approach to understanding flood systems in a coastal community in Cameroon. International Journal of Disaster Risk Reduction. 101,104236. https://doi.org/10.1016/j.ijdrr.2023.104236
Bagheri, A. (2006). Sustainable development: Implementation in urban water systems. (Ph.D Thesis, Department of Water Resources Engineering, Lund University, Lund, Sweden).
Bazrkar, M. H., Fathian, A., & Eslamian, S. (2013). Run off modeling in order to investigate the most effective factors in flood event using system dynamic approach (case study: Tehran watershed Iran). Flood Engineering, 4(1), 39-50.
Coletta V. R., Pagano A., Zimmermann N., Davies M., Butler, A., Fratino, U., Giordano R., & Pluchinotta, I. (2024). Socio-hydrological modelling using participatory system dynamics modelling for enhancing urban flood resilience through Blue-Green Infrastructure. Journal of Hydrology. 636, 131248. https://doi.org/10.1016/j.jhydrol.2024.131248.
Darbandi, S., Dinpajooh, Y., & Zeynali, S. (2014). Evaluate the performance of the system dynamics model to simulate rainfall-runoff process. Journal of Water and Soil, 28(1), 138-127. https://doi.org/10.1080/02626667.2020.1754420
Dastorani, M. T., Khodaparast, R., Talebi, A., Vafakhah, M., & Dashti, J. (2011). Determination of the ability of HEC-HMS model components in rainfall-run-off simulation. Research Journal of Environmental Sciences, 5(10), 790-797. https://doi.org/10.3923/RJES.2011.790.797
Deaton, M. L. (2000). Dynamic modeling of environmental systems. New York, USA: Springer-Verlag Publication.
Dietz, T., Ostrom, E., & Stern, P. C. (2003). The struggle to govern the commons. Science, 302(5652), 1907-1912. https://doi.org/10.1126/science. 1091015
Dotson, H. W. (2001). Watershed modeling with HEC-HMS (Hydrologic engineering centers-hydrologic modeling system) using spatially distributed rainfall. In: Gruntfest E., Handmer J. (Eds.), Coping with flash floods. NATO science series (Series 2. Environmental Security). (pp. 219- 230). Dordrecht: Springer. https://doi.org/10.1007/978-94-010-0918-8_21
Ebrahimzadeh, A., & Bagheri seyghalani, B. (2024). Overtopping risk evaluation of vanyar dam using system dynamics and impacts of flood on downstream land. Journal of New Approaches in Water and Environmental Engineering (JNAWEE). 2(2), 47-64. https://doi.org/10.22034/nawee.2023.422313.1052.
Feofilovs, M., Romagnoli, F., Gotangco, C. K., Josol J. C., Jardeleza J. M. P., Litam J. E., J. L., Campos & Abenojar, K. (2020). Assessing resilience against floods with a system dynamics approach: A comparative study of two models. International Journal of Disaster Resilience in the Built Environment, 11(5), 615-629. https://doi.org/10.1108/IJDRBE-02-2020-0013
Forrester, J.W. (1961). Industrial dynamics. Cambridge: MIT Press.
Goharshahi, G. A., Shahraki, J., Sardar Shahraki, A., & Ali Ahmadi, N. (2024). Dynamic analysis of sustainable management of water resources based on the correlation of water, food and energy resources (Case study: Darmian and Sarbisheh cities in South Khorasan Province). Irrigation and Water Engineering, 14 (3), 154-174. https://doi.org/10.22125/IWE.2023.415390.1747.
Hamdan, A. N. A., Almuktar, S., & Scholz, M. (2021). Rainfall-runoff modeling using the HEC-HMS model for the Al-Adhaim river catchment, northern Iraq. Hydrology, 8(2), 58. https://doi.org/10.3390/hydrology8020058.
Hojjati Marvast, E., Talebi, A., Dastorani, M. T., & Salajegheh, A. (2024). Developing a distributed hydrological balance model for predicting runoff in urban areas in Tehran, the capital of Iran. Ecopersia, 12(2), 93-109. http://dx.doi.org/10.22034/ECOPERSIA.12.2.1
Javanbakht-Sheikhahmad, F., Rostami, F., Azadi, H., Veisi, H., Amiri, F., & Witlox, F. (2024). Agricultural water resource management in the socio-hydrology: A framework for using system dynamics simulation. Water Resources Management, 38(8), 2753-2772. https://doi.org/10.1007/s11269-024-03786-z
Jian, Z., Abd Rahman, N. F., & Ong, J. (2023). Modelling the carrying capacity of water resources for sustainable water ecology using Vensim. International Journal of Professional Business Review, 8(9), e03846-e03846. https://doi.org/10.26668/businessreview/2023.v8i9.3846
Jiang, H., Simonovic, S. P., Yu, Z., & Wang, W. (2020). A system dynamics simulation approach for environmentally friendly operation of a reservoir system. Journal of Hydrology, 587, 124971. https://doi.org/10.1016/j.jhydrol.2020.124971.
Karandish, F., Ebrahimi, K., & Porhemmat, J. (2014). Considering the flood intensity of Karoun’s sub-basins and effective parameters on it in lumped and semi-distributed management simulation of flood hydrograph. Journal of Water and Irrigation Management (JWIM), 3(2), 1-12. https://doi.org/10.22059/jwim.2014.50038
Karimi, Z., & Talebi, A. (2023). An integration of remote sensing and the DPSIR framework to analyze the land-use changes in the future (Case study: Eskandari watershed). Ecopersia, 11(4), 319-336. https://doi.org/10.3390/w16172366
Li, W., Jiang, R., Wu, H., Xie, J., Zhao, Y., Song, Y., & Li, F. (2023). A system dynamics model of urban rainstorm and flood resilience to achieve the sustainable development goals. Sustainable Cities and Society, 96, 104631. https://doi.org/10.1016/j.scs.2023.104631.
Li, M., Niu, C., Li, X., Quan, L., Li, W., Liu, C., Shi, C., Soomro, S.E.H., Song, Q., & Hu, C. (2024). Modeling and evaluating the socio-economic–flood safety–ecological system of Landong floodplain using system dynamics and the weighted coupling coordination Degree Model. Water, 16(17), 2366. https://doi.org/10.3390/w16172366.
Lin, Q., Lin, B., Zhang, D., & Wu, J. (2022). Web-based prototype system for flood simulation and forecasting based on the HEC-HMS model. Environmental Modelling & Software, 158, 105541. https://doi.org/10.1016/j.envsoft.2022.105541.
Mikaeilzadeh, H. (2014). Investigating the effects of watershed management measures (mechanical and biological) on runoff using the HEC-HMS model (Case study: Nahan watershed). (Master’s Thesis, Faculty of Natural Resources and Desert Studies, Yazd University).
Mohammadi, F., Kamal, N. J., & Kamali, A. J. (2013). Investigating the role of sub-watershed participation in flood intensity of the Dalaki watershed. Scientific-Research Quarterly of Irrigation and Water Engineering, 4(13), 31-44.
Peker, İ. B., Gülbaz, S., Demir, V., Orhan, O., & Beden, N. (2024). Integration of HEC-RAS and HEC-HMS with GIS in flood modeling and flood hazard mapping. Sustainability, 16(3), 1226. https://doi.org/10.3390/su16031226
Phan, T. D., Bertone, E., & Stewart, R. A. (2021). Critical review of system dynamics modelling applications for water resources planning and management. Cleaner Environmental Systems, 2, 100031. https://doi.org/10.1016/j.cesys.2021.100031.
Poulose, T., Kumar, S., & Ganjegunte, G. K. (2021). Robust crop water simulation using system dynamic approach for participatory modeling. Environ. Environmental Modelling & Software, 1(135), 104899. https://doi.org/10.1016/j.envsoft.2020.104899
Pruyt, E. (2013). Small system dynamics models for big issues: Triple jump towards real-world complexity. Delft: TU Delft Library.
Sahu, M. K., Shwetha, H. R., & Dwarakish, G. S. (2023). State-of-the-art hydrological models and application of the HEC-HMS model: A review. Modeling Earth Systems and Environment, 9(3), 3029-3051. https://doi.org/10.1007/s40808-023-01704-7
Scharffenberger, W. (2006). Hydrologic modeling system HEC-HMS: User’s manual. Davis, CA: US Army Corps of Engineers, Hydrologic Engineering Center.
Solyman, M., Kepner, W. G., & Mehaffey, M. H. (2015). Integration landscape assessment and hydrologic modeling for land cover change analysis. Journal of the American Water Resources Association (JAWRA), 38(4), 919-929. https://doi.org/10.1111/j.1752-1688.2002.tb05534. x
Sterman, J. D. (2000). Business dynamics, systems thinking and modeling for a complex world. Boston: McGraw-Hill.
United States Army Corps of Engineers (USACE). (2000). Hydrologic modeling system HEC-HMS technical reference manual. Davis, CA: Hydrologic Engineering Center.
Van den Belt, M. (2004). Mediated modeling: A system dynamics approach to environmental consensus building. 1st Edn. Washington, USA: Island Press. https://doi.org/10.5860/choice.42-2242
Ventana Systems. (2004). Vensim 5 user’s guide. Harvard, MA, USA: Ventana Systems Inc.
Vlachos, D., Georgiadis, P., & Iakovou, E. A. (2007). System dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply Chains. Computers & operations research, 34, 367-94. https://doi.org/10.1016/j.cor.2005.03.005
Wang, G., Xiao, C., Qi, Z., Meng, F., & Liang, X. (2021). Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecological Indicators, 122, 107232. https://doi.org/10.1016/j.ecolind.2020.107232
Wen, C., Dong, W., Zhang, Q., He, N., & Li, T. (2022). A system dynamics model to simulate the water-energy-food nexus of resource-based regions: A case study in Daqing City, China. Science of the Total Environment, 806, 150497. https://doi.org/10.1016/j.scitotenv.2021.150497
Winz I, Brierley G. (2007). The use of system dynamics simulation in integrated water resources management. Auckland (New Zealand): University of Auckland, School of Geography, Geology and Environmental Science; 2007. Retrived from:
https://www.researchgate.net/publication/228936307_The_use_of_system_dynamics_simulation_in_integrated_water_resources_management
Yamani, M., Davarzani, Z., & Dadrasi, A. (2013). Evaluation of fuzzy logic relative to other conceptual models in zoning of flooding with emphasis on geomorphological aspects, Case study: Davarzan Basin. Geography and Territorial Spatial Arrangement (GTSA), 2(5), 121-134. https://doi.org/10.22111/gaij.2012.890
Yener, M. K., Sorman, A.U., Sorman, A. A, & Sensoy, A., Gezgin, T. (2007). Modeling studies with HEC-HMS and runoff scenarios in Yuvacik Basin, Turkiye. In: Proceedings of the 4th International Congress on River Basin Management. (pp. 621-634). Antalya, Turkiye.
Yu, X., & Zhang, J. (2023). The application and applicability of HEC-HMS model in flood simulation under the condition of river basin urbanization. Water, 15(12), 2249. https://doi.org/10.3390/w15122249