Bäck, S., Lehvo, A., & Blomster, J. (2000). Mass occurrence of unattached Enteromorpha intestinalis on the Finnish Baltic Sea coast. In Annales Botanici Fennici (pp. 155–161). JSTOR.
Barbosa, M., Lopes, G., Andrade, P. B., & Valentão, P. (2019). Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends in Food Science & Technology, 86, 153–171. https://doi.org/10.1016/j.tifs.2019.02.037
Bergman, C. J., Gualberto, D. G., & Weber, C. W. (1994). Development of a high-temperature-dried soft wheat pasta supplemented with cowpea (Vigna unguiculata (L.) Walp). Cooking quality, color, and sensory evaluation. Cereal Chemistry, 71(6), 523-527.
Björk, M., Axelsson, L., & Beer, S. (2004). Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Marine Ecology Progress Series, 284, 109–116. https://doi.org/10.3354/meps284109
Blomster, J., Back, S., Fewer, D. P., Kiirikki, M., Lehvo, A., Maggs, C. A., & Stanhope, M. J. (2002). Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. American Journal of Botany, 89(11), 1756-1763. https://doi.org/10.3732/ajb.89.11.1756
Blomster, J., Maggs, C. A., & Stanhope, M. J. (1998). Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (chlorophyta) in the British Isles. Journal of Phycology, 34(2), 319-340. https://doi.org/10.1046/j.1529-8817.1998.340319.x
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Çalışkan Koç, G., Tekgül, Y., & Çoban, S. (2020). Physicochemical properties, fatty acid composition, cooking quality, and sensory evaluation of pasta enriched with different oleiferous powders. Journal of Food Measurement and Characterization, 14(6), 3048-3057. https://doi.org/10.1007/s11694-020-00540-y
Chew, Y. L., Lim, Y. Y., Omar, M., & Khoo, K. S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT - Food Science and Technology, 41(6), 1067-1072. https://doi.org/10.1016/j.lwt.2007.06.013
Chillo, S., Laverse, J., Falcone, P. M., & Del Nobile, M. A. (2008). Quality of spaghetti in base amaranthus wholemeal flour added with quinoa, broad bean and chick pea. Journal of Food Engineering, 84(1), 101-107. https://doi.org/10.1016/j.jfoodeng.2007.04.022
Danesi. D. G., Lemes. A. C., Takeuchi. K. P., & de Carvalho. J. C. M. (2012). Fresh Pasta production enriched with Spirulina platensis Biomass. Brazilian Archives of Biology and Technology, 55, 741-750.
Duan, X.-J., Zhang, W.-W., Li, X.-M., & Wang, B.-G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37-43. https://doi.org/10.1016/j.foodchem.2004.12.015
Edwards, N. M., Izydorczyk, M. S., Dexter, J. E., & Biliaderis, C. G. (1993). Cooked pasta texture: comparison of dynamic viscoelastic properties to instrumental assessment of firmness. Cereal Chemistry, 70, 122.
Egodavitharana, D. I., Manikkrama, S., Bambaranda, B. V. A. S. M., & Mudannayake, D. C. (2024). Utilization of Sargassum crassifolium seaweed powder as a functional ingredient in wheat noodles. Journal of Applied Phycology, 36, 2903-2915 (2024). https://doi.org/10.1007/s10811-024-03290-2
Elizabeth, L., & Peter W., V. (1973). Evaluation of spaghetti quality by a laboratory panel. Canadian Institute of Food Science and Technology Journal, 6(4), 209-211. https://doi.org/10.1016/S0315-5463(73)74025-6
Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656-1664. https://doi.org/10.1002/jsfa.3999
Gallegos-Infante, J. A., Rocha-Guzman, N. E., Gonzalez-Laredo, R. F., Ochoa-Martínez, L. A., Corzo, N., Bello-Perez, L. A., Medina-Torres, L., & Peralta-Alvarez, L. E. (2010). Quality of spaghetti pasta containing Mexican common bean flour (
Phaseolus vulgaris L.).
Food Chemistry,
119(4), 1544-1549.
https://doi.org/10.1016/j.foodchem.2009.09.040
Granato, D., Barba, F. J., Bursać Kovačević, D., Lorenzo, J. M., Cruz, A. G., & Putnik, P. (2020). Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 11(1), 93-118. https://doi.org/10.1146/annurev-food-032519-051708
Hamouda, M. M., Saad-Allah, K. M., & Gad, D. (2022). Potential of seaweed extract on growth, physiological, cytological and biochemical parameters of wheat (Triticum aestivum L.) Seedlings. Journal of Soil Science and Plant Nutrition, 22(2), 1818-1831. https://doi.org/10.1007/s42729-022-00774-3
Haristy, D. R., Suryadarma, I. G. P., Huda, K., Rahayu, P., & Erlini, N. (2021). Review A Trending and Interesting Topic of ‘Aloe Vera: Healthy Lifestyle Trends Through Functional Food Consumption’in Science Learning. In 6th International Seminar on Science Education (ISSE 2020) (pp. 634-640). Atlantis Press.
Hodhodi, A., Babakhani, A., & Rostamzad, H. (2022). Effect of different extraction conditions on phlorotannin content and antioxidant activity of extract from brown algae (Sargassum angustifolium). Journal of Food Processing and Preservation, 46(3), e16307. https://doi.org/10.1111/jfpp.16307
IPO (International Pasta Organization). (2021). The world pasta industry status report. Retrieved from: https://internationalpasta.org/annual-report.
ISO. (1978). Determination of nitrogen content. ISO 937:1978 standard. International standards meat and meat products. Genève, Switzerland: International Organization for Standardization. Retrieved from: https://www.iso.org/home.html
ISO. (1997). Determination of moisture content. ISO 1442:1997 standard. International standards meat and meat products. Genève, Switzerland: International Organization for Standardization. Retrieved from: https://www.iso.org/home.html
ISO. (1998). Determination of ash content. ISO 936:1998 standard. International standards meat and meat products. Genève, Switzerland: International Organization for Standardization. Retrieved from: https://www.iso.org/home.html
Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of methods to determine antioxidant capacities. Food Analytical Methods, 2(1), 41-60. https://doi.org/10.1007/s12161-008-9067-7
Konik, C. M., Miskelly, D. M., & Gras, P. W. (1993). Starch swelling power, grain hardness and protein: Relationship to sensory properties of Japanese noodles.
Starch - Stärke,
45(4), 139–144.
https://doi.org/10.1002/star.19930450406
Kramer, A., & Szczesniak, A. S. (1973). Texture measurement of foods: psychophysical fundamentals; sensory, mechanical, and chemical procedures, and their interrelationships (1st ed.). Springer Science & Business Media.
Kuda, T., Tsunekawa, M., Goto, H., & Araki, Y. (2005). Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. Journal of Food Composition and Analysis, 18(7), 625-633. https://doi.org/10.1016/j.jfca.2004.06.015
Liu, X., Luo, G., Wang, L., & Yuan, W. (2019). Optimization of antioxidant extraction from edible brown algae Ascophyllum nodosum using response surface methodology. Food and Bioproducts Processing, 114, 205-215. https://doi.org/10.1016/j.fbp.2019.01.003
Miller, R. A., & Hoseney, R. C. (2008). Role of salt in baking. Cereal Foods World, 53(1), 4-6. https://doi.org/https://doi:10.1094/CFW-53-10004
Monica Joicy, C., Navitha, A. P., & Sivaraj, C. (2021). Studies on effect of marine macro algae Enteromorpha intestinalis as skin color enhancer and as an alternative for fish meal in feed supplemented to ornamental fishes. International Journal of Fisheries and Aquatic Studies, 9(2), 201-205. https://doi.org/10.22271/fish.2021.v9.i2c.2453
Murray, M., Dordevic, A. L., Ryan, L., & Bonham, M. P. (2018). An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols. Critical Reviews in Food Science and Nutrition, 58(8), 1342-1358. https://doi.org/10.1080/10408398.2016.1259209
Nasehi, B., Mortazavi, S. A., Razavi, S. M., Tehrani, M. M., & Karim, R. (2009). Effects of processing variables and full fat soy flour on nutritional and sensory properties of spaghetti using a mixture design approach.
International Journal of Food Sciences and Nutrition,
60(sup1), 112-125.
https://doi.org/10.1080/09637480802441101
Pomponi, S. A. (1999). The bioprocess-technological potential of the sea. In Osinga. R., Tramper J., Burgess, J.G., & Wijffels, R. H. (Eds). Marine Bioprocessing Engineering (pp. 5-13). Netherlands: Elsevier. https://doi.org/10.1016/S0079-6352(99)80092-7
Pradhan, B., Patra, S., Behera, C., Nayak, R., Jit, B. P., Ragusa, A., & Jena, M. (2021). Preliminary investigation of the antioxidant, anti-diabetic, and anti-inflammatory activity of Enteromorpha intestinalis extracts. Molecules, 26(4), 1171. https://doi.org/10.3390/molecules26041171
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
Rodríguez De Marco, E., Steffolani, M. E., Martínez, C. S., & León, A. E. (2014). Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Science and Technology, 58(1), 102-108. https://doi.org/10.1016/j.lwt.2014.02.054
Safari, P., Rezaei, M., & Shaviklo, A. R. (2015). The optimum conditions for the extraction of antioxidant compounds from the Persian Gulf green algae (Chaetomorpha sp.) using response surface methodology. Journal of Food Science and Technology, 52(5), 2974-2981. https://doi.org/10.1007/s13197-014-1355-1
Singh, A., Gupta, A., Surasani, V. K. R., & Sharma, S. (2021). Influence of supplementation with pangas protein isolates on textural attributes and sensory acceptability of semolina pasta. Journal of Food Measurement and Characterization, 15(2), 1317-1326. https://doi.org/10.1007/s11694-020-00728-2
Sissons, M. (2022). Development of novel pasta products with evidence based impacts on health—a review. Foods, 11(1), 123. https://doi.org/10.3390/foods11010123
Sobuj, M. K. A., Islam, Md. A., Haque, Md. A., Islam, Md. M., Alam, Md. J., & Rafiquzzaman, S. M. (2021). Evaluation of bioactive chemical composition, phenolic, and antioxidant profiling of different crude extracts of Sargassum coriifolium and Hypnea pannosa seaweeds. Journal of Food Measurement and Characterization, 15(2), 1653-1665. https://doi.org/10.1007/s11694-020-00758-w
Souza, B. W. S., Cerqueira, M. A., Martins, J. T., Quintas, M. A. C., Ferreira, A. C. S., Teixeira, J. A., & Vicente, A. A. (2011). Antioxidant potential of two red seaweeds from the Brazilian coasts. Journal of Agricultural and Food Chemistry, 59(10), 5589-5594. https://doi.org/10.1021/jf200999n
Sung, W. C., & Stone, M. (2003). Characterization of various wheat starch in pasta development. Journal of Marine Science and Technology, 11(2), 61-69. https://doi.org/10.51400/2709-6998.2282
Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61(5), 928-931. https://doi.org/10.1007/BF02542169
Tudoricǎ, C. M., Kuri, V., & Brennan, C. S. (2002). Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry, 50(2), 347-356. https://doi.org/10.1021/jf0106953
Ye, N., Zhang, X., Mao, Y., Liang, C., Xu, D., Zou, J., Zhuang, Z .M, & Wang, Q. (2011). ‘Green tides’ are overwhelming the coastline of our blue planet: Taking the world’s largest example.
Ecological Research,
26(3), 477-485.
https://doi.org/10.1007/s11284-011-0821-8
Zhang, S., Ma, Y. T., Feng, Y. C., Wang, C. Y., & Zhang, D. J. (2022). Potential effects of mung bean protein and a mung bean protein–polyphenol complex on oxidative stress levels and intestinal microflora in aging mice. Food & Function, 13(1), 186-197. https://doi.org/10.1039/D1FO03058B