New electrospun nanofiber based on grass pea protein isolate (Lathyrus sativus L.) for the food and biomedical applications

Document Type : Research Paper

Authors

1 Department of Food Science and Technology, School of Agriculture, Ferdowsi University of Mashhad, Mashhad, I. R. Iran

2 Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, I. R. Iran

3 Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

In the present study, new protein nanofibers were produced from grass pea (Lathyrus sativus L.) protein isolate and polyvinyl alcohol. Different ratios of grass pea protein isolate and polyvinyl alcohol (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) were mixed, and the nanofibers were produced by the electrospinning process. First, the properties of spinning solutions, including viscosity, electrical conductivity, and surface tension were examined, then the morphological, thermal, and mechanical properties of the electrospun nanofibers were investigated. By increasing the amount of grass pea protein isolate, the viscosity decreased, but the electrical conductivity and surface tension increased from 683 to 1108 µS/cm and 52 to 76 mN/m, respectively. SEM image analysis showed that the nanofibers containing up to 60% protein content had a bead-free and uniform structure with an average diameter of 138.43 nm. The FTIR analysis results suggested the effective fabrication of the hybrid nanofibers. The XRD patterns indicated a reduction in the crystallinity of composite nanofibers compared to polyvinyl alcohol. These new electrospun nanofibers have the potential to create films incorporating bioactive compounds, acting as functional food products.

Keywords

Main Subjects


Article Title [Persian]

نانوالیاف الکتروریسی شده جدید حاوی ایزوله پروتئین خلر (Lathyrus sativus L.) برای کاربردهای غذایی و زیست پزشکی

Authors [Persian]

  • مرضیه رضائی 1
  • ناصر صداقت 1
  • سارا هدایتی 2
  • محمد تقی گلمکانی 3
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ج.ا.ایران
2 مرکز تحقیقات تغذیه دانشگاه علوم پزشکی شیراز، شیراز، ج.ا. ایران
3 بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

در مطالعه حاضر، نانوالیاف پروتئینی جدید از ایزوله پروتئین خلر (Lathyrus sativus L.) و پلی وینیل الکل تولید شد. نسبت های مختلف ایزوله پروتئین خلر و پلی وینیل الکل (100:0، 80:20، 60:40، 40:60، 20:80، 0:100) مخلوط شده و نانوالیاف ها با فرآیند الکتروریسی تولید شدند. ابتدا خواص محلول های ریسندگی شامل ویسکوزیته، هدایت الکتریکی و کشش سطحی مورد بررسی قرار گرفت، سپس خواص مورفولوژیکی، حرارتی و مکانیکی نانوالیاف الکتروریسی شده بررسی گردید. با افزایش مقدار ایزوله پروتئین خلر، ویسکوزیته کاهش، اما هدایت الکتریکی و کشش سطحی به ترتیب از 683 به µS/cm 1108 و از 52 به mN/m 76 افزایش می یابد. بر اساس تصاویر SEM ، نانوالیاف حاوی 60 درصد پروتئین، ساختاری یکنواخت و بدون مهره با قطر 138 نانومتر دارد. نتایج FTIR تولید موفق نانوالیاف ترکیبی را تایید می کند. نمودار XRD کاهش بلورینگی نانوالیاف کامپوزیت را در مقایسه با پلی وینیل الکل نشان داد. این نانوالیاف الکتروریسی شده جدید، دارای پتانسیل تولید فیلم هایی با اجزای فعال زیستی است که به عنوان محصولات غذایی کاربردی عمل خواهد کرد.

Keywords [Persian]

  • الکتروریسی
  • پروتئین خلر
  • پلی وینیل الکل
  • نانوالیاف پروتئینی
Aghababaei, F., McClements, D. J., Martinez, M. M., & Hadidi, M. (2024). Electrospun plant protein-based nanofibers in food packaging. Food Chemistry, 432, 137236. https://doi.org/https://doi.org/10.1016/j.foodchem.2023.137236
Aguilar-Vázquez, G., Loarca-Piña, G., Figueroa-Cárdenas, J., & Mendoza, S. (2018). Electrospun fibers from blends of pea (Pisum sativum) protein and pullulan. Food Hydrocolloids, 83, 173-181. https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.04.051 
Aguilar-Vázquez, G., Ortiz-Frade, L., Figueroa-Cárdenas, J., López-Rubio, A., & Mendoza, S. (2020). Electrospinnability study of pea (Pisum sativum) and common bean (Phaseolus vulgaris L.) using the conformational and rheological behavior of their protein isolates. Polymer Testing, 81, 106217. https://doi.org/10.1016/j.polymertesting.2019.106217
Aman Mohammadi, M., Dakhili, S., Mirza Alizadeh, A., Kooki, S., Hassanzadazar, H., Alizadeh-Sani, M., & McClements, D. J. (2024). New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Critical Reviews in Food Science and Nutrition, 64(9), 2601-2617. https://doi.org/10.1080/10408398.2022.2124506
Ansarifar, E., Hedayati, S., Zeinali, T., Fathabad, A. E., Zarban, A., Marszałek, K., & Mousavi Khaneghah, A. (2022). Encapsulation of Jujube extract in electrospun nanofiber: Release profile, functional effectiveness, and application for active packaging. Food and Bioprocess Technology, 15(9), 2009-2019.
https://doi.org/10.1007/s11947-022-02860-x
Azizi, H., Koocheki, A., & Ghorani, B. (2023). Structural elucidation of Gluten/Zein nanofibers prepared by electrospinning process: Focus on the effect of zein on properties of nanofibers. Polymer Testing, 128, 108231. https://doi.org/10.1016/j.polymertesting.2023.108231
Balandrán-Quintana, R. R., Mendoza-Wilson, A. M., Montfort, G. R.-C., & Huerta-Ocampo, J. Á. (2019). Plant-based proteins. In Proteins: Sustainable source, processing and applications (pp. 97-130). Elsevier. https://doi.org/10.1016/B978-0-12-816695-6.00004-0
Bombin, A. D. J., Dunne, N. J., & McCarthy, H. O. (2020). Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Materials Science and Engineering: C, 114, 110994. https://doi.org/https://doi.org/10.1016/j.msec.2020.110994
Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414-431. https://doi.org/https://doi.org/10.1016/j.foodres.2009.09.003
Chanda, A., Adhikari, J., Ghosh, A., Chowdhury, S. R., Thomas, S., Datta, P., & Saha, P. (2018). Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. International Journal of Biological Macromolecules, 116, 774-785.
https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.05.099
Cho, D., Netravali, A. N., & Joo, Y. L. (2012). Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polymer Degradation and Stability, 97(5), 747-754. https://doi.org/10.1016/j.polymdegradstab.2012.02.007
Dey, P., Bal, T., & Gupta, R. N. (2020). Fabrication and invitro evaluation of electrospun gum ghatti-polyvinyl alcohol polymeric blend green nanofibre mat (GG-PVA NFM) as a novel material for polymeric scaffolds in wound healing. Polymer Testing, 91, 106826. https://doi.org/10.1016/j.polymertesting.2020.106826
Ebrahimi, S. E., Koocheki, A., Milani, E., & Mohebbi, M. (2016). Interactions between Lepidium perfoliatum seed gum–Grass pea (Lathyrus sativus) protein isolate in composite biodegradable film. Food Hydrocolloids, 54, 302-314.
https://doi.org/https://doi.org/10.1016/j.foodhyd.2015.10.020
El Halal, S. L. M., Fonseca, L. M., do Evangelho, J. A., Bruni, G. P., dos Santos Hackbart, H. C., da Rosa Zavareze, E., & Dias, A. R. G. (2019). Electrospun ultrafine fibers from black bean protein concentrates and polyvinyl alcohol. Food Biophysics, 14, 446-455. https://doi.org/10.1007/s11483-019-09594-y
Fang, Q., Zhu, M., Yu, S., Sui, G., & Yang, X. (2016). Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Materials Science and Engineering: B, 214, 1-10.
https://doi.org/https://doi.org/10.1016/j.mseb.2016.08.004
Feyzi, S., Milani, E., & Golimovahhed, Q. (2018). Grass pea (Lathyrus sativus L.) protein isolate: Study of extraction optimization, protein characterizations, structure and functional properties. Food Hydrocolloids, 74, 187-196.
https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.07.031
Ghorani, B., Emadzadeh, B., Rezaeinia, H., & Russell, S. J. (2020). Improvements in gelatin cold water solubility after electrospinning and associated physicochemical, functional and rheological properties. Food Hydrocolloids, 104, 105740. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.105740
Goudarzi, J., Moshtaghi, H., & Shahbazi, Y. (2023). Kappa-carrageenan-poly (vinyl alcohol) electrospun fiber mats encapsulated with Prunus domestica anthocyanins and epigallocatechin gallate to monitor the freshness and enhance the shelf-life quality of minced beef meat. Food Packaging and Shelf Life, 35, 101017. https://doi.org/https://doi.org/10.1016/j.fpsl.2022.101017
Gutschmidt, D., Hazra, R. S., Zhou, X., Xu, X., Sabzi, M., & Jiang, L. (2021). Electrospun, sepiolite-loaded poly (vinyl alcohol)/soy protein isolate nanofibers: Preparation, characterization, and their drug release behavior. International Journal of Pharmaceutics, 594, 120172. https://doi.org/https://doi.org/10.1016/j.ijpharm.2020.120172
Hajjari, M. M., Golmakani, M. T., & Sharif, N. (2023). Electrospun zein/C-phycocyanin composite: Simulation, characterization and therapeutic application. Food Hydrocolloids, 140, 108638. https://doi.org/10.1016/j.foodhyd.2023.108638
Koosha, K., Habibi, S., & Talebian, A. (2017). Fabrication and characterization of gelatin nanofibers dissolved in concentrated Acetic Acid. International Journal of Chemical and Molecular Engineering, 11(7), 497-500. https://doi.org/doi.org/10.5281/zenodo.1131409
Kumar, T. S. M., Kumar, K. S., Rajini, N., Siengchin, S., Ayrilmis, N., & Rajulu, A. V. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 175, 107074.
https://doi.org/10.1016/j.compositesb.2019.107074
Maftoonazad, N., Shahamirian, M., John, D., & Ramaswamy, H. (2019). Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Materials Science and Engineering: C, 94, 393-402.
https://doi.org/10.1016/j.msec.2018.09.033
Mahmud, M. M., Perveen, A., Matin, M. A., & Arafat, M. T. (2018). Effects of binary solvent mixtures on the electrospinning behavior of poly (vinyl alcohol). Materials Research Express, 5(11), 115407. https://doi.org/10.1088/2053-1591/aadf1f
Moradinezhad, F., Hedayati, S., & Ansarifar, E. (2023). Assessment of zataria multiflora essential oil—incorporated electrospun polyvinyl alcohol fiber mat as active packaging. Polymers, 15(4), 1048. https://doi.org/https://doi.org/10.3390/polym15041048
Raghavan, P., Lim, D. H., Ahn, J. H., Nah, C., Sherrington, D. C., Ryu, H. S., & Ahn, H. J. (2012). Electrospun polymer nanofibers: The booming cutting edge technology. Reactive and Functional Polymers, 72(12), 915-930.
https://doi.org/10.1016/j.reactfunctpolym.2012.08.018
Rostami, M., Beheshtizadeh, N., Ranjbar, F. E., Najafi, N., Ahmadi, A., Ahmadi, P., Rostamabadi, H., Pazhouhnia, Z., Assadpour, E., & Mirzanajafi-Zanjani, M. (2023). Recent advances in electrospun protein fibers/nanofibers for the food and biomedical applications. Advances in Colloid and Interface Science, 311, 102827.
https://doi.org/10.1016/j.cis.2022.102827
Shanesazzadeh, E., Kadivar, M., & Fathi, M. (2018). Production and characterization of hydrophilic and hydrophobic sunflower protein isolate nanofibers by electrospinning method. International Journal of Biological Macromolecules, 119, 1-7.
https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.07.132
Sharif, N., Golmakani, M. T., Hajjari, M. M., Aghaee, E., & Ghasemi, J. B. (2021). Antibacterial cuminaldehyde/hydroxypropyl-β-cyclodextrin inclusion complex electrospun fibers mat: Fabrication and characterization. Food Packaging and Shelf Life, 29, 100738.
https://doi.org/10.1016/j.fpsl.2021.100738
Sharif, N., Golmakani, M. T., Niakousari, M., Ghorani, B., & Lopez-Rubio, A. (2019). Food-grade gliadin microstructures obtained by electrohydrodynamic processing. Food Research International, 116, 1366-1373. https://doi.org/https://doi.org/10.1016/j.foodres.2018.10.027
Souri, Z., Hedayati, S., Niakousari, M., & Mazloomi, S. M. (2023). Fabrication of ɛ-Polylysine-Loaded electrospun nanofiber mats from persian gum–poly (Ethylene Oxide) and evaluation of their physicochemical and antimicrobial properties. Foods, 12(13), 2588. https://doi.org/10.3390/foods12132588
Vega‐Lugo, A. C., & Lim, L. T. (2012). Effects of poly (ethylene oxide) and pH on the electrospinning of whey protein isolate. Journal of Polymer Science Part B: Polymer Physics, 50(16), 1188-1197.
https://doi.org/10.1002/polb.23106
wen Jia, X., yu Qin, Z., xin Xu, J., hua Kong, B., Liu, Q., & Wang, H. (2020). Preparation and characterization of pea protein isolate-pullulan blend electrospun nanofiber films. International Journal of Biological Macromolecules, 157, 641-647.
https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.11.216
Xu, X., Jiang, L., Zhou, Z., Wu, X., & Wang, Y. (2012). Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS Applied Materials & Interfaces, 4(8), 4331-4337. https://doi.org/https://doi.org/10.1021/am300991e
Yao, F., Gao, Y., Chen, F., & Du, Y. (2022). Preparation and properties of electrospun peanut protein isolate/poly-l-lactic acid nanofibers. LWT 153, 112418. https://doi.org/10.1016/j.lwt.2021.112418
Zaitoon, A., & Lim, L.T. (2020). Effect of poly (ethylene oxide) on the electrospinning behavior and characteristics of ethyl cellulose composite fibers. Materialia, 10, 100649.
https://doi.org/10.1016/j.mtla.2020.100649