First report of aspergillus sydowii ASP17 as a promising biological control agent against soil-borne fungal and fungal-like plant pathogens: A laboratory study

Document Type : Research Paper

Authors

1 Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, I. R. Iran

2 Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran

Abstract

This study aimed to investigate the antagonistic properties of the Aspergillus sydowii ASP17 isolate against soil-borne fungal and like-fungal pathogens including Rhizoctonia solani, Phytophthora nicotianae, and Pythium aphanidermatum under in vitro experiments. The results showed that A. sydowii ASP17 inhibited 57.4% growth of R. solani, 45.4% of P. nicotianae, and 53.3% of P. aphanidermatum in a dual culture test. In the second experiment, A. sydowii ASP17 showed inhibition rates of 72.7% for R. solani, 45.9% for Ph. nicotianae, and 56% for P. aphanidermatum. The highest efficacy in the dual culture test was observed against R. solani, but in the volatile organic compounds test, the highest efficacy was against P. aphanidermatum. The ASP17 isolate acted by antibiosis by forming inhibition zones caused by the antifungal substances without contact with the pathogen. This study also investigated the production of volatile organic compounds, hydrogen cyanide, and the cell wall-degrading enzymes protease and lipase, which may be related to the biocontrol activity of the isolate. The production of hydrogen cyanide was also examined in the A. sydowii ASP17 isolate. These data could support the potential use of A. sydowii ASP17 as a biocontrol agent in agriculture, especially in environments where the use of chemical fungicides is undesirable. 

Keywords

Main Subjects


Article Title [Persian]

اولین گزارش از Aspergillus sydowii ASP17 به‌عنوان یک عامل مهارزیستی امیدبخش در برابر بیمارگرهای قارچی و شبه‌قارچی گیاهی خاکزاد: یک مطالعه آزمایشگاهی

Authors [Persian]

  • رضا قرین 1
  • مریم میرطالبی 1
  • اکبر کارگر 2
1 بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
2 بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

در این مطالعه اثر آنتاگونیستی جدایه Aspergillus sydowii ASP17 در شرایط آزمایشگاهی علیه بیمارگرهای قارچی و شبه ­قارچی خاکزاد Rhizoctonia solani، Phytophthora nicotianae  و Pythium aphanidermatum مورد بررسی قرار گرفت. نتایج نشان داد که جدایه ASP17 در آزمون کشت متقابل، دارای توانایی مهار رشد قارچ R. solani به میزان 57 درصد، Ph. nicotianae  به میزان 45/4 درصد و P. aphanidermatum به میزان 53/3 درصد می ‏باشد. بازدارندگی این جدایه در آزمایش دوم به ترتیب 72/7، 45/9 و 56 درصد علیه R. solani، Ph. nicotianae و P. aphanidermatum بود. بالاترین میزان بازدارندگی در آزمون کشت متقابل در برابر R. solani مشاهده شد. اما در آزمون مواد آلی فرار بالاترین نرخ مهار علیه P. aphanidermatum بود. جدایه ASP17 با ایجاد مناطق بازدارنده ناشی از مواد ضد­قارچی بدون تماس با بیمارگر، با سازوکار آنتی بیوز از فعالیت هر سه بیمارگر جلوگیری کرد. در این مطالعه همچنین تولید ترکیب ­های آلی فرار، سیانید هیدروژن و آنزیم­های تجزیه­ کننده دیواره سلولی پروتئاز و لیپاز بررسی شد که ممکن است به فعالیت مهار­زیستی این جدایه مرتبط باشد. داده ‏های حاصل از این مطالعه، می‏ تواند استفاده بالقوه از Aspergillus sydowii ASP17  به‌عنوان یک عامل مهارزیستی در کشاورزی، به ویژه در محیط‏ هایی که استفاده از قارچ‌کش ‏های شیمیایی نامطلوب است، را حمایت کند

Keywords [Persian]

  • آزمون کشت متقابل
  • آنزیم های تجزیه کننده دیواره سلولی
  • ترکیب های آلی فرار
  • سیانید هیدروژن
Alker, A. P., Smith, G. W., & Kim, K. (2001). Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia, 460, 105-111.‏ https://doi.org/10.1023/A:1013145524136
Baker, K. R., Smith, J. A., & Johnson, L. (2020). Enzymatic activity of soil microorganisms: Implications for nutrient cycling and soil health. Soil Biology and Biochemistry, 142, 107706. https://doi.org/10.1016/j.soilbio.2020.107706
Baker, R. J., & Cook, R. J. (1974). Biological control of plant pathogens. San Francisco: W. H. Freeman and Company. https://doi.org/10.1094/PHI-A-2006-1117-0
Baron, N. C., Costa, N. T. A., Mochi, D. A., & Rigobelo, E. C. (2018). First report of Aspergillus sydowii and Aspergillus brasiliensis as phosphorus solubilizers in maize. Annals of Microbiology, 68(12), 863-870.‏ https://doi.org/10.1007/s13213-018-1392-5
Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237-246.‏ https://doi.org/10.1007/s10658-006-9089-1
D’Ambrosio, G., Cariddi, C., Mannerucci, F., & Bruno, G. L. (2022). In vitro screening of new biological limiters against some of the main soil-borne phytopathogens. Sustainability, 14(5), 2693. https://doi.org/10.3390/su14052693
Daigham, G. E., Mahfouz, A. Y., Abdelaziz, A. M., Nofel, M. M., & Attia, M. S. (2023). Protective role of plant growth-promoting fungi Aspergillus chevalieri OP593083 and Aspergillus egyptiacus OP593080 as biocontrol approach against Alternaria leaf spot disease of Vicia faba plant. Biomass Conversion and Biorefinery, 14, 1-17.‏ https://doi.org/10.1007/s13399-023-04510-4
Deb, L., & Dutta, P. (2021). Antagonistic potential of Beauveria bassiana (Balsamo) Vuillemin against Pythium myriotylum causing damping off of tomato. Indian Phytopathology, 74(3), 715-728.‏ https://doi.org/10.1007/s42360-021-00372-w
Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: III. Hyphal interaction. Transactions of the British Mycological Society, 57(3), 363-369.‏ https://sid.ir/paper/606603/en
Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. Saint Paul, Minnesota: The American Phytopathological Society.
Esparza‐Reynoso, S., Ruíz‐Herrera, L. F., Pelagio‐Flores, R., Macías‐Rodríguez, L. I., Martínez‐Trujillo, M., López‐Coria, M., Sánchez-Nieto, S., Herrera-Estrella, A., & López‐Bucio, J. (2021). Trichoderma atroviride‐emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. Plant, Cell & Environment, 44(6), 1961-1976.‏ https://doi.org/10.1111/pce.14014
Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186-194.‏ https://doi.org/10.1038/nature10947
Gharin, R. (2023). Study of the Inhibitory Effect of the Fungi Isolated from Vermicompost of Arugula (Eruca sativa Mill.) on the Root-knot Nematode Meloidogyne javanica in Tomato. (Master’s thesis, University of Shiraz, Fars, Iran).
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species–opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56.‏ https://doi.org/10.1038/nrmicro797
Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10.
https://doi.org/10.1094/PDIS.2003.87.1.4
Jashni, M. K., Mehrabi, R., Collemare, J., Mesarich, C. H., & de Wit, P. J. (2015). The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. Frontiers in Plant Science, 6, 584.‏
https://doi.org/10.3389/fpls.2015.00584
Katan, J. (2000). Physical and cultural methods for the management of soil-borne pathogens. Crop Protection, 19(8-10), 725-731.‏ https://doi.org/10.1016/S0261-2194(00)00096-X
Katan, J. (2017). Diseases caused by soilborne pathogens: Biology, management and challenges. Journal of Plant Pathology, 99(2), 305-315.‏ http://www.jstor.org/stable/44686775
Klich, M. A., & Pitt, J. I. (1988). A laboratory guide to the common Aspergillus species and their teleomorphs. North Ryde, N.S.W: Commonwealth Sci. Industr. Res. Org. Div. Food processing.‏
Köhl, J., Postma, J., Nicot, P., Ruocco, M., & Blum, B. (2011). Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control, 57(1), 1-12.‏
https://doi.org/10.1016/j.biocontrol.2010.12.004
Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139-193.‏ https://doi.org/10.1080/10408440802291497
Kremer, R. J., & Souissi, T. (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology, 43, 182-186.‏ https://doi.org/10.1007/s002840010284
Kumar, A., Kumar, S. J., Chintagunta, A. D., Agarwal, D. K., Pal, G., Singh, A. N., & Simal-Gandara, J. (2022). Biocontrol potential of Pseudomonas stutzeri endophyte from Withania somnifera (Ashwagandha) seed extract against pathogenic Fusarium oxysporum and Rhizoctonia solani. Archives of Phytopathology and Plant Protection, 55(1), 1-18.‏ https://doi.org/10.1080/03235408.2021.1983384
Landum, M. C., do Rosário Félix, M., Alho, J., Garcia, R., Cabrita, M. J., Rei, F., & Varanda, C. M. (2016). Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research, 183, 100-108.‏
https://doi.org/10.1016/j.micres.2015.12.001
Larkin, R. P., & Fravel, D. R. (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease, 82(9), 1022-1028. https://doi.org/10.1094/PDIS.1998.82.9.1022
Li, Q., Wu, L., Hao, J., Luo, L., Cao, Y., & Li, J. (2015). Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of Ceratocystis fimbriata. Plos One, 10(7), e0132009.‏ https://doi.org/10.1371/journal.pone.0132009.
Marfenina, O. E., Fomicheva, G. M., Gorlenko, M. V., & Svirida, N. M. (2013). Ecophysiological differences between saprotrophic and clinical strains of the microscopic fungus Aspergillus sydowii (Bainier & Sartory) Thom & Church. Microbiology, 82, 85-90.‏ https://doi.org/10.1134/S0026261713010086
Mejía, L. C., Rojas, E. I., Maynard, Z., Van Bael, S., Arnold, A. E., Hebbar, P., Samuels, G. J., Robbins, N., & Herre, E. A. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46(1), 4-14.‏ https://doi.org/10.1016/j.biocontrol.2008.01.012
Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian Journal of Microbiology, 52, 522-529.‏
https://doi.org/10.1007/s12088-012-0308-5
Ngo, M. T., Van Nguyen, M., Han, J. W., Kim, B., Kim, Y. K., Park, M. S., Kim, H., & Choi, G. J. (2021). Biocontrol potential of Aspergillus species producing antimicrobial metabolites. Frontiers in Microbiology, 12, 804333.‏
Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117-1142.
https://doi.org/10.1094/phi-a-2006-1117-02
Poveda, J. (2021). Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biological Control, 159, 104634.
Raper, K. B., & Fennel, D. I. (1965). The Genus Aspergillus Baltimore. MD: Williams & Wilkins.‏
Razo-Belmán, R., Ángeles-López, Y. I., García-Ortega, L. F., León-Ramírez, C. G., Ortiz-Castellanos, L., Yu, H., & Martínez-Soto, D. (2023). Fungal volatile organic compounds: mechanisms involved in their sensing and dynamic communication with plants. Frontiers in Plant Science, 14, 1257098. https://doi.org/10.3389/fpls.2023.1257098
Rypien, K. L., Andras, J. P., & Harvell, C. D. (2008). Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii. Molecular Ecology, 17(18), 4068-4078.‏ https://doi.org/10.1111/j.1365-294X.2008.03894.x
Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsube, S., Szigeti, G., Yaguchi, T., & Frisvad, J. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology, 78(1), 141-173.‏ https://doi.org/10.1016/j.simyco.2014.07.004
Sarkar, A. K., & Sadhukhan, S. (2023). Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. Physiologia Plantarum, 175(1), e13845.
Schild, L., Heyken, A., de Groot, P. W., Hiller, E., Mock, M., de Koster, C., Horn, U., Rupp, S., & Hube, B. (2011). Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryotic Cell, 10(1), 98-109.
https://doi.org/10.1128/ec.00210-10
Siqueira, J. P. Z., Sutton, D. A., García, D., Gené, J., Thomson, P., Wiederhold, N., & Guarro, J. (2016). Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biology, 120(11), 1458-1467.‏ https://doi.org/10.1016/j.funbio.2016.02.006
Thambugala, K. M., Daranagama, D. A., Phillips, A. J., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology, 10, 604923. https://doi.org/10.3389/fcimb.2020.604923.
Volke-Sepulveda, T., Salgado-Bautista, D., Bergmann, C., Wells, L., Gutierrez-Sanchez, G., & Favela-Torres, E. (2016). Secretomic insight into glucose metabolism of Aspergillus brasiliensis in solid-state fermentation. Journal of Proteome Research, 15(10), 3856-3871.‏ https://doi.org/10.1021/acs.jproteome.6b00663
Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52(1), 487-511.
‏https://doi.org/10.1093/jexbot/52.suppl_1.487
Wonglom, P., Ito, S. I., & Sunpapao, A. (2020). Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response, and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology, 43, 100867. https://doi.org/10.1016/j.funeco.2019.100867.
Yarden, O. (2014). Fungal association with sessile marine invertebrates. Frontiers in Microbiology, 5, 228-228.‏ http:/doi.org/10.3389/fmicb.2014.00228