Alker, A. P., Smith, G. W., & Kim, K. (2001). Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia, 460, 105-111. https://doi.org/10.1023/A:1013145524136
Baker, K. R., Smith, J. A., & Johnson, L. (2020). Enzymatic activity of soil microorganisms: Implications for nutrient cycling and soil health.
Soil Biology and Biochemistry,
142, 107706.
https://doi.org/10.1016/j.soilbio.2020.107706
Baker, R. J., & Cook, R. J. (1974). Biological control of plant pathogens. San Francisco: W. H. Freeman and Company. https://doi.org/10.1094/PHI-A-2006-1117-0
Baron, N. C., Costa, N. T. A., Mochi, D. A., & Rigobelo, E. C. (2018). First report of Aspergillus sydowii and Aspergillus brasiliensis as phosphorus solubilizers in maize. Annals of Microbiology, 68(12), 863-870. https://doi.org/10.1007/s13213-018-1392-5
Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237-246. https://doi.org/10.1007/s10658-006-9089-1
D’Ambrosio, G., Cariddi, C., Mannerucci, F., & Bruno, G. L. (2022). In vitro screening of new biological limiters against some of the main soil-borne phytopathogens. Sustainability, 14(5), 2693. https://doi.org/10.3390/su14052693
Daigham, G. E., Mahfouz, A. Y., Abdelaziz, A. M., Nofel, M. M., & Attia, M. S. (2023). Protective role of plant growth-promoting fungi
Aspergillus chevalieri OP593083 and
Aspergillus egyptiacus OP593080 as biocontrol approach against
Alternaria leaf spot disease of
Vicia faba plant.
Biomass Conversion and Biorefinery,
14, 1-17.
https://doi.org/10.1007/s13399-023-04510-4
Deb, L., & Dutta, P. (2021). Antagonistic potential of Beauveria bassiana (Balsamo) Vuillemin against Pythium myriotylum causing damping off of tomato. Indian Phytopathology, 74(3), 715-728. https://doi.org/10.1007/s42360-021-00372-w
Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: III. Hyphal interaction. Transactions of the British Mycological Society, 57(3), 363-369. https://sid.ir/paper/606603/en
Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. Saint Paul, Minnesota: The American Phytopathological Society.
Esparza‐Reynoso, S., Ruíz‐Herrera, L. F., Pelagio‐Flores, R., Macías‐Rodríguez, L. I., Martínez‐Trujillo, M., López‐Coria, M., Sánchez-Nieto, S., Herrera-Estrella, A., & López‐Bucio, J. (2021). Trichoderma atroviride‐emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. Plant, Cell & Environment, 44(6), 1961-1976. https://doi.org/10.1111/pce.14014
Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186-194. https://doi.org/10.1038/nature10947
Gharin, R. (2023). Study of the Inhibitory Effect of the Fungi Isolated from Vermicompost of Arugula (Eruca sativa Mill.) on the Root-knot Nematode Meloidogyne javanica in Tomato. (Master’s thesis, University of Shiraz, Fars, Iran).
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species–opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797
Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10.
https://doi.org/10.1094/PDIS.2003.87.1.4
Jashni, M. K., Mehrabi, R., Collemare, J., Mesarich, C. H., & de Wit, P. J. (2015). The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. Frontiers in Plant Science, 6, 584.
https://doi.org/10.3389/fpls.2015.00584
Katan, J. (2000). Physical and cultural methods for the management of soil-borne pathogens. Crop Protection, 19(8-10), 725-731. https://doi.org/10.1016/S0261-2194(00)00096-X
Katan, J. (2017). Diseases caused by soilborne pathogens: Biology, management and challenges. Journal of Plant Pathology, 99(2), 305-315. http://www.jstor.org/stable/44686775
Klich, M. A., & Pitt, J. I. (1988). A laboratory guide to the common Aspergillus species and their teleomorphs. North Ryde, N.S.W: Commonwealth Sci. Industr. Res. Org. Div. Food processing.
Köhl, J., Postma, J., Nicot, P., Ruocco, M., & Blum, B. (2011). Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control, 57(1), 1-12.
https://doi.org/10.1016/j.biocontrol.2010.12.004
Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139-193. https://doi.org/10.1080/10408440802291497
Kremer, R. J., & Souissi, T. (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology, 43, 182-186. https://doi.org/10.1007/s002840010284
Kumar, A., Kumar, S. J., Chintagunta, A. D., Agarwal, D. K., Pal, G., Singh, A. N., & Simal-Gandara, J. (2022). Biocontrol potential of Pseudomonas stutzeri endophyte from Withania somnifera (Ashwagandha) seed extract against pathogenic Fusarium oxysporum and Rhizoctonia solani. Archives of Phytopathology and Plant Protection, 55(1), 1-18. https://doi.org/10.1080/03235408.2021.1983384
Landum, M. C., do Rosário Félix, M., Alho, J., Garcia, R., Cabrita, M. J., Rei, F., & Varanda, C. M. (2016). Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research, 183, 100-108.
https://doi.org/10.1016/j.micres.2015.12.001
Larkin, R. P., & Fravel, D. R. (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease, 82(9), 1022-1028. https://doi.org/10.1094/PDIS.1998.82.9.1022
Li, Q., Wu, L., Hao, J., Luo, L., Cao, Y., & Li, J. (2015). Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of
Ceratocystis fimbriata.
Plos One,
10(7), e0132009.
https://doi.org/10.1371/journal.pone.0132009.
Marfenina, O. E., Fomicheva, G. M., Gorlenko, M. V., & Svirida, N. M. (2013). Ecophysiological differences between saprotrophic and clinical strains of the microscopic fungus Aspergillus sydowii (Bainier & Sartory) Thom & Church. Microbiology, 82, 85-90. https://doi.org/10.1134/S0026261713010086
Mejía, L. C., Rojas, E. I., Maynard, Z., Van Bael, S., Arnold, A. E., Hebbar, P., Samuels, G. J., Robbins, N., & Herre, E. A. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46(1), 4-14. https://doi.org/10.1016/j.biocontrol.2008.01.012
Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian Journal of Microbiology, 52, 522-529.
https://doi.org/10.1007/s12088-012-0308-5
Ngo, M. T., Van Nguyen, M., Han, J. W., Kim, B., Kim, Y. K., Park, M. S., Kim, H., & Choi, G. J. (2021). Biocontrol potential of Aspergillus species producing antimicrobial metabolites. Frontiers in Microbiology, 12, 804333.
Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117-1142.
https://doi.org/10.1094/phi-a-2006-1117-02
Poveda, J. (2021). Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biological Control, 159, 104634.
Raper, K. B., & Fennel, D. I. (1965). The Genus Aspergillus Baltimore. MD: Williams & Wilkins.
Razo-Belmán, R., Ángeles-López, Y. I., García-Ortega, L. F., León-Ramírez, C. G., Ortiz-Castellanos, L., Yu, H., & Martínez-Soto, D. (2023). Fungal volatile organic compounds: mechanisms involved in their sensing and dynamic communication with plants
. Frontiers in Plant Science,
14, 1257098.
https://doi.org/10.3389/fpls.2023.1257098
Rypien, K. L., Andras, J. P., & Harvell, C. D. (2008). Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii. Molecular Ecology, 17(18), 4068-4078. https://doi.org/10.1111/j.1365-294X.2008.03894.x
Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsube, S., Szigeti, G., Yaguchi, T., & Frisvad, J. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology, 78(1), 141-173. https://doi.org/10.1016/j.simyco.2014.07.004
Sarkar, A. K., & Sadhukhan, S. (2023). Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. Physiologia Plantarum, 175(1), e13845.
Schild, L., Heyken, A., de Groot, P. W., Hiller, E., Mock, M., de Koster, C., Horn, U., Rupp, S., & Hube, B. (2011). Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryotic Cell, 10(1), 98-109.
https://doi.org/10.1128/ec.00210-10
Siqueira, J. P. Z., Sutton, D. A., García, D., Gené, J., Thomson, P., Wiederhold, N., & Guarro, J. (2016). Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biology, 120(11), 1458-1467. https://doi.org/10.1016/j.funbio.2016.02.006
Thambugala, K. M., Daranagama, D. A., Phillips, A. J., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens
. Frontiers in Cellular and Infection Microbiology,
10, 604923.
https://doi.org/10.3389/fcimb.2020.604923.
Volke-Sepulveda, T., Salgado-Bautista, D., Bergmann, C., Wells, L., Gutierrez-Sanchez, G., & Favela-Torres, E. (2016). Secretomic insight into glucose metabolism of Aspergillus brasiliensis in solid-state fermentation. Journal of Proteome Research, 15(10), 3856-3871. https://doi.org/10.1021/acs.jproteome.6b00663
Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52(1), 487-511.
https://doi.org/10.1093/jexbot/52.suppl_1.487
Wonglom, P., Ito, S. I., & Sunpapao, A. (2020). Volatile organic compounds emitted from endophytic fungus
Trichoderma asperellum T1 mediate antifungal activity, defense response, and promote plant growth in lettuce (
Lactuca sativa).
Fungal Ecology,
43, 100867.
https://doi.org/10.1016/j.funeco.2019.100867.
Yarden, O. (2014). Fungal association with sessile marine invertebrates. Frontiers in Microbiology, 5, 228-228. http:/doi.org/10.3389/fmicb.2014.00228