Lentil (lens culinaris Medik.) genotype × PGR (Plant growth regulator) interaction and heritability of some traits under in vitro conditions

Document Type : Research Paper

Authors

1 Department of Agronomy and Plant breeding, Faculty of Agriculture, Yasouj University, Yasouj, I. R. Iran.

2 Dryland Agricultural Research Institute, Gachsaran, Iran

10.22099/iar.2024.48842.1563

Abstract

Plant breeders are constantly evaluating genetic diversity resources to lay a foundation for crop improvement. Tissue culture techniques have been applied successfully in many species to generate genetic variation in plants. Researches on lentil genetic diversity and parameter estimation under tissue culture conditions are relatively limited. Therefore, this research was carried out in three separate experiments for genetic parameters estimation and to understand the response of 14 lentil genotypes to callus induction using kinetin (Kin) and 2,4-dichlorophenoxyacetic acid (2,4-D) growth regulators; shoot production using thidiazuron (TDZ), 2-Isopentyladenine (2iP), benzylamino purine (BAP), and Kin growth regulators; and rooting the plants using NAA growth regulator. Results showed that the best treatments were 1 mg/L Kin and 2 mg/L 2,4-D for callus induction, 3 mg/L BAP, 4 mg/L Kin, and 2 mg/L TDZ for shoot regeneration, and 3 mg/L NAA for rooting. The 09S 83259-14ILL6994/ILL5480 and FLIP2010-40L-10770-ILL8119/ILL7686 genotypes were the best in term of callus, shoot, and root induction. The broad sense heritability of most of the traits was high demonstrating lower contribution of environmental factors in phenotypic variances. Overall, large diversity identified among genotypes in vitro conditions and high heritability estimates indicated that selection based on the measured traits including callus, shoot, and root induction will be efficient in tissue culture conditions.

Keywords

Main Subjects


Article Title [Persian]

برهمکنش ژنوتیپ×تنظیم کننده های رشد و وراثت پذیری صفات عدس (lens culinaris Medik.) در شرایط درون شیشه ای

Authors [Persian]

  • هاجر آشوردن 1
  • مسعود دهداری 1
  • اسد معصومی اصل 1
  • رحمت الله کریمی زاده 2
1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج
2 موسسه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، گچساران، ایران.
Abstract [Persian]

به‌نژادگران گیاهی به طور مداوم به دنبال منابع جدید تنوع ژنتیکی هستند تا پتانسیل‌های مفیدی برای اصلاح گیاهان مختلف ایجاد کنند. تحقیقات بر روی تنوع ژنتیکی و تخمین پارامترهای عدس در شرایط کشت بافت بسیار محدود است. بنابراین، این تحقیق در سه آزمایش جداگانه برای تخمین پارامترهای ژنتیکی و پاسخ 14 ژنوتیپ عدس به القای کالوس با استفاده از تنظیم‌کننده‌های رشد کینتین و 2, 4-D، برای تولید ساقه با بکارگیری تنظیم کننده های رشد TDZ, 2ip, BAP, Kin و برای ریشه‌زایی با استفاده از تنظیم کننده رشد NAA طراحی و اجرا گردید. نتایج نشان داد که بهترین تیمارها 1 میلی گرم در لیتر Kin و 2 میلی گرم در لیتر 2, 4-D برای القای کالوس بود. 3 میلی گرم در لیتر BAP و 4 میلی گرم در لیتر Kin و 2 میلی گرم در لیتر TDZ برای تولید شاخساره و 3 میلی گرم در لیتر NAA برای ریشه زایی مناسبترین تیمارها بودند. ژنوتیپ های09S 83259-14، ILL6994/ILL5480و FLIP2010-40L-10770-ILL8119/ILL7686 بهترین پاسخ را به هر سه مرحله کشت بافت داشتند. پتانسیل اولیه ژنوتیپ در تشکیل کالوس و اندام مهم بود. وراثت پذیری بیشتر صفات بالا بود که تأثیرات کم عوامل محیطی و اپی‌ژنتیکی را تأیید می کند. به طور کلی، تنوع گسترده بین ژنوتیپ ها و وراثت پذیری بالای اکثر صفات نشان می دهد که انتخاب بر اساس این صفات در شرایط کشت بافت کارآمد خواهد بود.

Keywords [Persian]

  • باززایی
  • پارامترهای ژنتیکی
  • تنظیم کننده های رشد
  • وراثت پذیری
Aasim, M. (2012). Micropropagation of lentil using pulse treatment of immature plumular apices. Pakistan Journal of Agricultural Sciences, 49(2), 149-152.
Altaf, N., Iqbal, J., & Salih Ahmad, M. (2000). Somaclonal variation in microsperma Lentil (Lens culinaris Medik). Pakistan Journal of Biotechnology, 2, 697-699.
https://doi.org/10.3923/pjbs.1999.697.699.
Anil, V. S., Bennur, S., & Lobo, S. (2018). Somaclonal variations for crop improvement: Selection for disease resistant variants in vitro. Plant Science Today, 5(2), 44-45.
https://doi.org/10.14719/pst.2018.5.2.382.
Ates, D. (2019). Genetic diversity in lentil landraces revealed by diversity array technology (DArT). Turkish Journal of Field Crops, 24, 252-260. https://doi.org/10.17557/tjfc.656511.
Bagheri, A., Ghasemi Omran, V., & Hatefi, S. (2012). Indirect in vitro regeneration of lentil (Lens culinaris Medik.). Journal of Plant Molecular Breeding, 1(1), 43-50. https://doi.org/10.22058/jpmb.2013.1705.
Bajaj, Y. P. S., & Danju, M. S. (1979). Regeneration of plant from apical meristem tips of some legumes. Current Science, 48, 906-907.
https://doi.org/10.1007/BF00043039.
Bakhsh, A., Ghafoor, A., & Malik, B. A. (1992). Evaluation of lentil germplasm. Pakistan Journal of Scientific and Industrial Research, 35, 48-49.
Bayrac, A. T. (2004). Optimization of a regeneration and transformation system for lentil (Lens culinaris Medik., cv. Sultan-I) cotyledonary petioles and epicotyls. (Master’s thesis, Middle East Technical University, Ankara, Turkey).
Chawla, H. S. (2009). Introduction to Plant Biotechnology (3 rd.). Enfield, NH, USA: CRC Press.
Chen, J. T., & Chang, W. C. (2002). Effects of tissue culture conditions and explant characteristics on direct somatic embryogenesis in Oncidium `Gower Ramsey'. Plant Cell, Tissue and Organ Culture, 69, 41–44. https://doi.org/10.1023/A:1015004912408
Chowdhury, M. M., Haque, M. A., Malek, M. A., Rasel, M., Molla, M. R. & Ahamed. K. U. (2020). Morphological and SSR marker-based diversity analysis of lentil (Lens esculenta) genotypes using yield and yield contributing characters. Indian Journal of Agricultural Research, 54(4), 429-436.
https://dx.doi.org/10.18805/IJARe.A-464.
Fratini, R., & Ruiz, M. L. (2001). Comparative study of different cytokinins in the induction of morphogenesis in lentil (Lens culinaris Medik.). In Vitro Cellular & Developmental Biology, 38, 46-51. https://doi.org/10.1079/IVP2001252.
Ghanem, S. A., Moursy, H. A., Reda, A. A., & Bahr, M. K. (1989). Effect of some growth regulators on the growth of Lens culinaris Medik., cultured in vitro. African Journal of Agriculture, 16, 155-161.
Ghasemi Omran, V., & Bagheri. A. (2010). Optimization of root regeneration of two lentil genotypes in vitro condition. Iranian Journal of Field Crops Research, 8(1), 90-97.
https://doi.org/10.22067/gsc.v8i1.7397. (In Persian)
Goodnight, J., & Sall, J. (2003). SAS [computer program]. (Version 9.4). Cary, NC: SAS Institute Inc; https://www.sas.com/en_us/home.html
Gordon, J. S. (2008). The status of the in vitro embryo. Bioethics, 22(5), 296-298.
https://doi.org/10.1111/j.1467-8519.2008.00635.x.
Gulati, A., Schryer, P., & McHughen. A. (2001). Regeneration and micro grafting of Lentil shoots. In Vitro Cellular & Developmental Biology, 37, 798-802. https://doi.org/10.1007/s11627-001-0132-9.
Gupta, A., M. Sinka, K., Mani, V. P., & Dube, S. D. (1996). Classification and genetic diversity in lentil germplasm. Lens Newsletter, 23, 19-14.
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347, 1-32.
Kaya, S., Turker, M., & Eray, N. (2015). Somatic embryogenesis on Turkish lentil (Lens culinaris Medik.) cultivars. Journal of Applied Biological Sciences, 9 (3), 49-58.
https://www.jabsonline.org/index.php/jabs/article/view/469.
Khawar, K. M., Sancak, C., Uranbey, S., & Özcan, S. (2004). Effect of thidiazuron on shoot regeneration from different explants of lentil (Lens culinaris M.) via organogenesis. Turkish Journal of Botany, 28, 421-426.
Kumar, A. (2019). Genetic diversity of yield attributing components and seed yield in lentil (Lens culinaris Medik.). Current Journal of Applied Science and Technology, 33 (2), 1-6.
https://doi.org/10.9734/cjast/2019/v33i230056.
Naqvi, S. M. S., & Sultana, T. (2010). Optimization of tissue culture and genetic transformation in Lentil (Lens culinaris Medik). Proceeding of 6th International Conference of Biological Science (Botn). Yogyakarta, Indonesia.
Polanco, M.C., Pelaez, M. I., & Ruiz, M. L. (1988). Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell, Tissue and Organ Culture, 15, 175-182. https://doi.org/10.1007/BF00035759.
Sarker, R. H., Barkat, M. M., Ashappurno, B., Shirin, M., Mouful, N., Rehana, H., & Hoque, M. L. (2003). In vitro regeneration in lentil (Lens culinaris). Plant Tissue Culture, 13, 155-164.
Saxena, P. K., & King, J. (1987). Morphogenesis in lentil: Plant regeneration from callus cultures of Lens culinaris Medik. via somatic embryogenesis. Plant Science, 52, 223- 227.
Sharma, J. R. (2006). Statistical and Biometrical Techniques in Plant Breeding. New Delhi: New Age International (p) Limited Publishers.
Singh, R. K., & Raghuwanshi. S. S. (1989). Plantlet regeneration from nodal segment and shoot tip derived explants of lentil. Lens Newsletters, 16, 33–35.
Stoilova, T., & Pereira, M. G. (1999). Morphological characterization of 120 lentil accessions. Lens Newsletter, 26(2), 7-9.
Taleb Bidokhti, S., Safrinejad, A., Lahouti, M., & Bagheri, A. (2003). Effect of genotype, explants and growth hormones in lentil tissue culture. In: Proceedings of the 3rd National Biotechnology Conference of the Islamic Republic of Iran. Mashhad, Ferdowsi University
Williams, D. J., & McHughen, A. (1986). Plant regeneration of legume Lens culinaris Medik. (lentil) In vitro. Plant Cell, Tissue and Organ Culture, 7, 149-15.
https://doi.org/10.1007/BF00043039.
Ye, G., Mcneil, A., Conner, J., & Hill, G. D. (2002). Multiple shoot formation in lentil (Lens culinaris Medik) seeds. New Zealand Journal of Crop and Horticultural Science, 30, 1-8.
https://dx.doi.org/10.1080/01140671.2002.9514193.
Zaker Tavallaie, F., Bagheri, A., Ghareyazie, B., & Sharma, K. K. (2009). Optimization of tissue culture condition in lentil to induce effective multiple shoot induction. Iranian Journal of Field Crops Research, 7(2), 411-419. (In Persian).
https://dorl.net/dor/20.1001.1.20081472.1388.7.2.8.8