Wheat Straw Biochar Interacts with Irrigation Water and Irrigation Water Salinity to Improve Water Use Efficiency and Yield of Faba Bean

Document Type : Research Paper

Authors

1 Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, I.R. Iran

2 Water Engineering Department, School of Agriculture, Shiraz University, I.R. Iran Drought Research Center, Shiraz University, I.R. Iran

3 Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Denmark

Abstract

Faba bean, although, is widely cultivated, it’s yield is affected by drought and salinity stresses. Biochar can potentially reduce the negative effects of drought and salinity stress. In this study, the interaction effects of biochar, irrigation water regimes and irrigation water salinities on faba bean’s yield, crop water use efficiency (CWUE) and ion concentrations were evaluated under greenhouse condition. The treatments were biochar (0, 1.25 and 2.5% w/w, as B0, B1.25 and B2.5, respectively), irrigation water regime (50, 75 and 100% of crop water requirement, as I50%, I75%, and I100%, respectively) and irrigation water salinity (0.6, 4 and 8 dS m-1, as S0.6, S4 and S8, respectively), that were arranged in a factorial arrangement using a complete randomized design with four replications. Biochar applied at 2.5% w/w significantly decreased actual crop evapotranspiration by 11% in comparison with that obtained in B0. The maximum dry seed yield (14.4 g pot-1) was obtained under B2.5S0.6I100% treatment. The CWUE of 0.47 kg m-3 for B2.5S8I50% was 1.27 times that obtained in B0S0.6I100%. Seed sodium concentration under B2.5S8I50% (0.34 g kg-1) was significantly lower than that obtained in B0S8I50% (0.55 g kg-1). Biochar application increased the plant tolerance to salinity, as the maximum threshold of soil saturated electrical conductivity of 5.2 dS m-1 was observed under B2.5I50% treatment, which was higher than 2.5 dS m-1 obtained in B0I50% treatment. Finally, cultivation of faba bean under 2.5% w/w biochar and 100% non-saline irrigation water level is recommended for maximum faba bean production.

Keywords


Article Title [Persian]

برهمکنش بیوچار کاه و کلش گندم با آب آبیاری و شوری آب آبیاری برای بهبود راندمان مصرف آب و محصول باقلا

Authors [Persian]

  • محمد رضا بهادری قصرالدشتی 1
  • فاطمه رزاقی 2
  • علی رضا سپاسخواه 2
  • ایمنویل آرتور 3
1 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران
2 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، شیراز، ج.ا. ایران و مرکز تحقیقات خشکسالی، دانشگاه شیراز، شیراز، ج.ا. ایران
3 بخش آگرواکولوژی، دانشکده علوم فنی، دانشگاه آرهوس، دانمارک
Abstract [Persian]

باقلا با وجود اینکه به طور گسترده کشت می‌شود، میزان محصول آن تحت تأثیر تنش‌های خشکی و شوری قرار دارد. بیوچار به طور بالقوه می‌تواند اثرات منفی تنش خشکی و شوری را کاهش دهد. در این تحقیق، ارزیابی اثرات متقابل بیوچار، رژیم‌های آب آبیاری و شوری آب آبیاری بر عملکرد باقلا، کارایی مصرف آب محصول (CWUE) و غلظت یون در شرایط گلخانه‌ مورد ارزیابی قرار گرفت. تیمارها شامل صفر، 1/25 و 2/5 درصد وزنی بیوچار (بترتیب بعنوان تیمارهای B0، B1.25 و B2.5)، رژیم های آبیاری (50، 75 و 100 درصد نیاز آبی محصول، بترتیب بعنوان تیمارهای I50%، I75% و I100%) و شوری آب آبیاری (0/6، 4 و 8 دسی‌زیمنس بر متر، بترتیب بعنوان تیمارهای S0.6، S4 و S8) بود که به صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار منظور شدند. کاربرد بیوچار 2/5 درصد وزنی در مقایسه با B0 سبب کاهش 11 درصدی تبخیر- تعرق واقعی شد. حداکثر محصول دانه خشک (14/4 گرم در گلدان) تحت تیمار B2.5S0.6I100% بدست آمد. مقدار CWUE در تیمار B2.5S8I50 0/47کیلوگرم بر مترمکعب بدست آمد که 1/27 برابر CWUE در تیمار B0S0.6I100% بود. غلظت سدیم بذر در تیمار B2.5S8I50% (0/34 گرم بر کیلوگرم) به طور معنی داری کمتر از غلظت سدیم بذر در تیمار B0S8I50% (0/55 گرم بر کیلوگرم) بود. کاربرد بیوچار تحمل گیاه به شوری را افزایش داد، زیرا حداکثر آستانه هدایت الکتریکی اشباع خاک 5/2 دسی زیمنس بر متر در تیمار B2.5I50% مشاهده شد که بالاتر از 2/5 دسی زیمنس بر متر در تیمار B0I50% بود. در نهایت، کاشت باقلا با کاربرد 2/5 درصد وزنی بیوچار و آبیاری کامل با آب غیر شور برای تولید حداکثری باقلا توصیه می شود.

Keywords [Persian]

  • آستانه هدایت الکتریکی اشباع
  • تابع محصول-شوری
  • تبخیر-تعرق واقعی
  • نسبت جذب سدیم
Abiven, S., Menassero, S., & Chenu, C. (2009). The effect of organic inputs over time on soil aggregate stability - A literature analysis. Soil Biolology and Biochemistry, 41, 1–12. https://doi.org/10.1016/j.soilbio.2008.09.015
Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18.
Afzal, M., Alghamdi, S. S., Migdadi, H. H., El-Harty, E., & Al-Faifi, S. A. (2022). Agronomical and physiological responses of faba bean genotypes to salt stress. Agriculture, 12(2), 235.
https://doi.org/10.3390/agriculture12020235
Agbna, G. H., Dongli, S., Zhipeng, L., Elshaikh, N. A., Guangcheng, S., & Timm, L. C. (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae. 222, 90–101.
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015a). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201, 368–378.
https://doi.org/10.1111/jac.12132
Akhtar, S. S., Andersen, M. N., Naveed, M., Zahir, Z. A., & Liu, F. (2015b). Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Functional Plant Biology, 42, 770–781. https://doi.org/10.1071/FP15054
Ali, K., Arif, M., Shah, F., Shehzad, A., Munsif, F., Mian, I. A., & Mian, A. A. (2017a). Improvement in maize (Zea mays L.) growth and quality through integrated use of biochar. Pakistan Journal of Botany, 49, 85–94.
Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M., & Shahzad, A. N. (2017b). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24, 12700–12712.
https://doi.org/10.1007/s11356-017-8904-x
Athar, H. R., & Ashraf, M. (2009). Strategies for crop improvement against salinity and drought stress: An overview. In Ashraf, M., Ozturk, M., & Athar, H. (Eds.). Salinity and Water Stress: Improving Crop Efficiency (Tasks for Vegetation Science, 44, pp. 1–16). Dordrecht: Springer.
https://doi.org/10.1007/978-1-4020-9065-3_1
Bulut, F., Akinci, S., & Eroglu, A. (2011). Growth and uptake of sodium and potassium in broad bean (Vicia faba L.) under salinity stress. Communications in Soil Science and Plant Analysis, 42, 945–961. https://doi.org/10.1080/00103624.2011.558963
Faloye, O. T., Alatise, M. O., Ajayi, A. E., & Ewulo, B. S. (2019). Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217, 165–178.
https://doi.org/10.1016/j.agwat.2019.02.044
FAOSTAT. (2017). Crops and livestock products. Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved from:
http://www.fao.org/faostat/en/#data/QC
Hillel, D. (2000). Salinity management for sustainable irrigation: Integrating science, environment, and economics. Report number 20842. Washington (DC): The World Bank.
Huang, M., Zhang, Z., Zhai, Y., Lu, P., & Zhu, C. (2019). Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy, 9, 457. https://doi.org/10.1007/s11104-014-2294-3
Ibrahim, A., Usman, A. R. A, Al-Wabel, M. I., Nadeem, M., Ok, Y. S., & Al-Omran, A. (2017). Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: influence of particle size and application depth. Archives of Agronomy and Soil Science, 63, 185–197.
Jia, Z., Wang, Q., Zhu, C., & Yang, G. (2016). Adsorption of Ions at the interface of clay minerals and aqueous solutions. In Rahman, M. M., & Asiri, A. M. (Eds.). Advances in colloid science. London: IntechOpen.
Katerji, N., van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62, 37–66.
https://doi.org/10.1016/S0378-3774(03)00005-2
Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51, 47.
Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., ... & Huang, L. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156, 221-232.
Knudsen, D., Peterson, G. A., & Pratt, F. (1982). Lithium, sodium, and potassium. In Page, A. L. (Ed.). Methods of soil analysis. Part 2. Chemical and microbiological properties, Agronomy Monograph 9.2 (pp. 225-246). Madison (WI): American Society of Agronomy and Soil Science Society of America.
Lizarazo, C. I., Lampi, A. M., Sontag-Strohm, T., Liu, J., Piironen, V., & Stoddard, F. L. (2015). Nutritive quality and protein production from grain legumes in a boreal climate. Journal of the Science of Food and Agriculture, 95, 2053–2064.
https://doi.org/10.1002/jsfa.6920
Luo, L. J. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany, 61, 3509–3517.
https://doi.org/10.1093/jxb/erq185
Manavalan, L. P., Guttikonda, S. K., Tran, L. S. P., & Nguyen, H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 50, 1260–1276. https://doi.org/10.1093/pcp/pcp082
Mariani, L., & Ferrante, A. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses–drought, salinity, hypoxia, and lodging. Horticulturae, 3, 52.
https://doi.org/10.3390/horticulturae3040052
Mensah, A. K., & Frimpong, K. A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. International Journal of Agronomy, 2018, 1–8.
https://doi.org/10.1155/2018/6837404
Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.
https://doi.org/10.1111/j.1469-8137.2005.01487.x
Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth, 5, 65–75.
https://doi.org/10.5194/se-5-65-2014
Phuong, N. T. K., Khoi, C., M., Ritz, K., Linh, T. B., Minh, D. D., Duc, T. A., Sinh, N. V., Linh, T. T., & Toyota, K. (2020). Influence of rice husk biochar and compost amendments on salt contents and hydraulic properties of soil and rice yield in salt-affected fields. Agronomy, 10, 1101.
Poormansour, S., Razzaghi, F., & Sepaskhah, A. R. (2019). Wheat straw biochar increases potassium concentration, root density, and yield of Faba Bean in a sandy loam soil. Communications in Soil Science and Plant Analysis, 50, 1799–1810.
https://doi.org/10.1080/00103624.2019.1635145
Rawat, J., Saxena, J., & Sanwal P. (2019). Biochar: A sustainable approach for improving plant growth and soil properties. In Abrol, V., & Sharma, O. (Eds.). Biochar- an imperative amendment for soil and the environment (pp. 1-17). London: IntechOpen.
https://doi.org/10.5772/intechopen.82151
Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055
Rezaie, N., Razzaghi, F., & Sepaskhah, A. R. (2019). Different levels of irrigation water salinity and biochar influence on Faba Bean yield, water productivity, and ions uptake. Communications in Soil Science and Plant Analysis, 50, 611–626.
https://doi.org/10.1080/00103624.2019.1574809
Rhoades, J. (1996). Salinity: Electrical conductivity and total dissolved solids. In Sparks, D. L. Page, A. L., Helmke, P. A., Loeppert, R. H. Soltanpour P. N., Tabatabai M. A., Johnston, C. T., and Sumner, M. E. (Eds.), Methods of soil analysis, Part 3. Chemical methods (pp. 417–435). Madison, Wisconsin: Soil Science Society of America and American Society of Agronomy.
Ricciardi, L., Polignano, G. B., & Giovanni, C. D. (2001). Genotypic response of faba bean to water stress. Euphytica, 118, 39–46.
https://doi.org/10.1023/A:1004078017159
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No.60, Washington, D. C.: U. S. Government Printing Office.
SAS Institute Inc. (2007). SAS user's gude in statistics (9th ed.). Cary: SAS Institute Inc.
Siddiqui, M. H., Al-Khaishany, M. Y., Al-Qutami, M. A., Al-Whaibi, M. H., Grover, A., Ali, H. M., & Al-Wahibi, M. S. (2015). Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi Journal of Biological Sciences, 22, 656–663.
Singh, R. B., Minhas, P. S., Chauhan, C. P. S., & Gupta, R. K. (1992). Effect of high salinity and SAR waters on salinization, sodication and yields of pearl-millet and wheat. Agricultural Water Management, 21(1-2), 93-105. https://doi.org/10.1016/0378-3774(92)90085-B
Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27, 205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
Videgain-Marco, M., Marco-Montori, P., Martí-Dalmau, C., Jaizme-Vega, M. C., Manyà-Cervelló, J. J., & García-Ramos, F. J. (2020). Effects of biochar application in a sorghum crop under greenhouse conditions: Growth parameters and physicochemical fertility. Agronomy, 10, 104.
https://doi.org/10.3390/agronomy10010104
Wang, F., Liu, Y., Li, X., & Liu, F. (2018). Effects of biochar amendment, CO2 elevation and drought on leaf gas exchange, biomass production and water use efficiency in maize. Pakistan Journal of Botany, 50, 1347–1353.
Wong, J. T. F., Chen, Z., Chen, X., Ng, C. W. W., & Ming, H. W. (2017). Soil-water retention behavior of compacted biochar-amended clay: A novel landfill final cover material. Journal of Soils and Sediments, 17, 590–598. https://doi.org/10.1007/s11368-016-1401-x
Xi, J. J., Chen, H. Y., Bai, W. P., Yang, R. C., Yang, P. Z., Chen, R. J., Hu, T. M., & Wang, S. M. (2018). Sodium-related adaptations to drought: New insights from the xerophyte plant Zygophyllum xanthoxylum. Frontiers in Plant Science, 9, 1678.
Xu, J., Niu, W. Q., Zhang, M. Z., Li, Y., Lyu, W., Li, K.Y., Zou, X.Y., & Liang, B. H. (2016). Effect of biochar addition on soil evaporation. Ying Yong Sheng Tai Xue Bao= The Journal of Applied Ecology, 27, 3505–3513. (Article in Chinese, Abstract in English).
Yang, A., Akhtar, S. S., Li, L., Fu, Q., Li, Q., Naeem, M. A., He, X., Zhang, Z., & Jacobsen, S-E. (2020). Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy, 10, 912. https://doi.org/10.3390/agronomy10060912
Yang, H., Shukla, M. K., Mao, X., Kang, S., & Du, T. (2019). Interactive regimes of reduced irrigation and salt stress depressed tomato water use efficiency at leaf and plant scales by affecting leaf physiology and stem sap flow. Frontiers in Plant Science, 10, 160. https://doi.org/10.3389/fpls.2019.00160
Yue, L. J., Li, S. X., Ma, Q., Zhou, X. R., Wu, G.Q., Bao, A. K., Zhang, J. L., & Wang, S. M. (2012). NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. Journal of Arid Environments, 87, 153–160.
Zhang, Y., Din, J., Wang, H., Su, L., & Zhao, C. (2020). Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biology, 20, 288. https://doi.org/10.1186/s12870-020-02493-2
Zhang, H., Li, D., Zhou, Z., Zahoor, R., Chen, B., & Meng, Y. (2017). Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil. Agricultural Water Management, 187, 112–121.